Главная - Бытовая техника
Что такое скорость света? Как измеряли скорость света и каково ее реальное значение.

Тема о том, как измерить, а также чему равна скорость света, интересовала ученых с древности. Это очень увлекательная тема, которая испокон веков являлась объектом научных диспутов. Считается, что такая скорость является конечной, недостижимой и постоянной величиной. Она недостижима и постоянна, как бесконечность. При этом она конечна. Получается интересная физико-математическая головоломка. Существует один из вариантов решения этой задачи. Ведь скорость света все-таки удалось измерить.

В античные века мыслители полагали, что скорость распространения света - это величина бесконечная. Первую оценку этого показателя дал в 1676 г. Олаф Ремер . По его расчетам скорость света равнялась приблизительно 220 тысяч км/с. Это было не совсем точное значение, но близкое к истинному.

Конечность и оценка скорости света подтвердились спустя полвека.

В дальнейшем ученому Физо удалось определить скорость света по времени прохождения лучом точного расстояния.

Он поставил опыт (см. рисунок), в ходе которого от источника S отходил пучок света, отражался зеркалом 3, прерывался зубчатым диском 2 и проходил базу (8 км). Далее он отражался зеркалом 1 и возвращался к диску. Свет попадал в промежуток между зубцами и его можно было наблюдать через окуляр 4. Время прохождения лучом базы определялось в зависимости от скоростей вращения диска. Значение, полученное Физо, было таким: с = 313300 км/с.

Скорость распространения луча в какой-либо определенной среде меньше, чем эта скорость в вакууме. Кроме того, для разных веществ этот показатель принимает различные значения. Через несколько лет Фуко заменил диск на быстровращающееся зеркало. Последователи этих ученых многократно использовали их методы и схемы исследования.

Линзы являются основой оптических приборов. Знаете, как вычисляется ? Узнать это вы сможете, прочитав одну из наших статей.

А информацию про то как настроить оптический прицел, состоящий из таких линз вы сможете найти . Прочитайте наш материал и у вас не останется вопросов по теме.

Чему равна скорость света в вакууме?

Самое точное измерение скорости света показывает цифру 1 079 252 848,8 километров в час или 299 792 458 м/c . Эта цифра справедлива только для условий, создаваемых в вакууме.

Но для решения задач обычно применяют показатель 300 000 000 м/c . В вакууме скорость света в планковских единицах равняется 1. Таким образом, энергия света проходит 1 планковскую единицу длины за 1 единицу планковского времени. Если создается вакуум в природных условиях, то с такой скоростью могут перемещаться рентгеновские лучи, световые волны видимого спектра и гравитационные волны.

Существует однозначное мнение ученых, что частицы, имеющие массу, могут принимать скорость, которая максимально приближена к скорости света. Но достичь и превысить показатель они не в состоянии. Самая большая скорость, приближенная к скорости света, была зафиксирована при исследовании космических лучей и при разгоне некоторых частиц в ускорителях.

Значение скорости света в какой-либо среде зависит от показателя преломления этой среды.

Этот показатель может быть различным для разных частот. Точное измерение величины имеет значение для расчета других физических параметров. Например, для выяснения расстояния во время прохождения световых или радиосигналов в оптической локации, радиолокации, светодальнометрии и других сферах.

Современные ученые применяют разные методы для определения скорости света. Некоторые специалисты используют астрономические способы, а также методы измерения с помощью экспериментальной техники. Очень часто применяется усовершенствованный метод Физо. При этом зубчатое колесо заменяют на модулятор света, который ослабляет или прерывает пучок света. Приемником здесь является фотоэлектрический умножитель или фотоэлемент. Источником света может служить лазер, что помогает снизить погрешность измерений. Определение скорости света по времени прохождения базы может проходить прямыми или косвенными методами, которые также позволяют получить точные результаты.

По каким формулам вычисляют скорость света

  1. Скорость распространения света в вакууме - это величина абсолютная. Физики обозначают ее буквой «с». Это фундаментальная и постоянная величина, которая не зависит от выбора системы отчета и дает характеристику времени и пространству в целом. Ученые предполагают, что такая скорость является предельной скоростью движения частиц.

    Формула скорости света в вакууме:

    с = 3 * 10^8 = 299792458 м/с

    здесь с является показателем скорости света в вакууме.

  2. Ученые доказали, что скорость света в воздухе почти совпадает со скоростью света в вакууме. Ее можно вычислить по формуле:

Скорость света в различных средах различается значительно. Сложность состоит в том, что человеческий глаз не видит его во всем спектральном диапазоне. Природа происхождения световых лучей интересовала ученых еще в древности. Первые попытки расчета скорости света были предприняты еще за 300 лет до н.э. В тот период ученые определили, что волна распространяется по прямой линии.

Быстрый ответ

Им удалось описать математическими формулами свойства и света и траекторию его движения. стала известной через 2 тысячи лет после проведения первых исследований.

Что такое световой поток?

Световой луч представляет собой электромагнитную волну в сочетании с фотонами. Под фотонами понимают простейшие элементы, которые также называют квантами электромагнитного излучения. Световой поток во всех спектрах невидим. Он не перемещается в пространстве в традиционном понимании этого слова. Для описания состояния электромагнитной волны с квантовыми частицами введено понятие показателя преломления оптической среды.

Световой поток переносится в пространстве в виде луча с малым поперечным сечением. Способ движения в пространстве выведен геометрическими методами. Это прямолинейный пучок, который на границе с различными средами начинает преломляться, формируя криволинейную траекторию. Ученые доказали, что максимальная скорость создается в вакууме, в других средах скорость движения может различаться в разы. Учеными разработана система, световой луч и выведенная величина в которой является основной для выведения и отсчета некоторых единиц СИ.

Немного исторических фактов

Примерно около 900 лет назад Авиценой было выдвинуто предположение, что независимо от номинала величины скорость света имеет конечное значение. Галилео Галилей пытался опытным путем вычислить скорость светового потока. С помощью двух фонариков экспериментаторы пытались засечь время, за которое световой пучок от одного объекта будет виден другому. Но такой эксперимент выявился неудачным. Скорость оказалась столь высока, что им не удалось засечь время задержки.

Галилео Галилей обратил внимание на то, что у Юпитера промежуток между затмениями четырех его спутников составил 1320 секунд. На основе этих открытий в 1676 году астроном из Дании Оле Ремер рассчитал скорость распространения светового пучка, как значение 222 тысячи км/сек. На тот период данное измерение было наиболее точным, но его не могли проверить земными мерками.

Через 200 лет Луизи Физо смог вычислить скорость движения светового луча опытным путем. Он создал специальную установку с зеркалом и зубчатым механизмом, который вращался на огромной скорости. Световой поток отражался от зеркала и через 8 км возвращался назад. При увеличении скорости колеса возникал тот момент, когда зубчатый механизм перекрывал луч. Таким образом, скорость луча была установлена, как 312 тысяч километров в секунду.

Фуко усовершенствовал это оборудование, уменьшив параметры за счет замены зубчатого механизма плоским зеркалом. У него точность измерений получилась наиболее приближенной к современному эталону и составила 288 тысяч метров в секунду. Фуко предпринял попытки рассчитать скорость света в инородной среде, взяв за основу воду. Физику удалось сделать вывод, что данная величина не постоянная и зависит от особенностей преломления в данной среде.

Вакуум представляет собой пространство, свободное от вещества. Скорость света в вакууме в системе Си обозначена латинской буквой C. Она является недостижимой. Ни один предмет нельзя разогнать до такого значения. Физики только предполагают, что может произойти с объектами, если они разгонятся до такой степени. Скорость распространения светового луча обладает постоянными характеристиками, она:

  • постоянная и конечная;
  • недостижимая и неизменная.

Знание этой константы позволяет вычислить, с какой максимальной скоростью объекты могут перемещаться в космосе. Величина распространения луча света признана фундаментальной постоянной. Она используется для характеристик пространства времени. Это предельно допустимое значение для движущихся частиц. Какая скорость света в вакууме? Современную величину получили посредством лабораторных измерений и математических подсчетов. Она равна 299.792.458 метров в секунду с точностью до ± 1,2 м/с . Во многих дисциплинах, в том числе в школьных, при решении задач используются приближенных вычисления. Берется показатель, равный 3 108 м/с.

Световые волны видимого человеку спектра и рентгеновские волны возможно разогнать до показаний, приближающихся до скорости распространения света. Они не могут сравняться с этой константой, а также превысить ее значение. Константа выведена на основе отслеживания поведения космических лучей в момент разгона их в специальных ускорителях. Она зависит от той инерциальной среды, в которой происходит распространение луча. В воде прохождение света ниже на 25%, а воздухе будет зависеть от температуры и давления на момент вычислений.

Все расчеты проведены с использованием теории относительности и закону причинности, выведенному Энштейном. Физик считает, что если объекты достигнут скорости 1 079 252 848,8 километров/час и превысят ее, то произойдут необратимые изменения в строении нашего мира, система поломается. Время начнет отсчитываться в обратном порядке, нарушая порядок событий.

На основе скорости светового луча выведено определение метра. Под ним понимают участок, который успевает пройти световой луч за 1/299792458 секунды. Не следует смешивать данное понятие с эталоном. Эталон метра - это специальное техническое устройство на кадмиевой основе со штриховкой, позволяющее видеть данное расстояние физически.

Художественное представление космического корабля, совершающего прыжок к "скорости света". Предоставлено: NASA/Glenn Research Center.

С древних времен философы и ученые стремились понять свет. Кроме того, пытаясь определить его основные свойства (т.е. из чего он состоит - частица или волна и т.д.), они также стремились проделать конечные измерения того, как быстро он движется. С конца 17 века ученые делают именно это, и с возрастающей точностью.

Поступая таким образом, они получили лучшее понимание механики света, и какую важную роль он играет в физике, астрономии и космологии. Проще говоря, свет движется с невероятной скоростью, и это самый быстро движущийся объект во Вселенной. Его скорость является постоянной и неприступным барьером и используется в качестве измерения расстояния. Но насколько же быстро он движется?

Скорость света (с):

Свет движется с постоянной скоростью 1 079 252 848,8 км/ч (1,07 млрд). Что получается 299 792 458 м/с. Расставим все по своим местам. Если вы могли бы двигаться со скоростью света, вы смогли бы обогнуть земной шар примерно семь с половиной раз в секунду. Между тем, у человека, летящего со средней скоростью 800 км/ч, заняло бы более 50 часов, чтобы обогнуть планету.

Иллюстрация, показывающая расстояние, которое свет проходит между Землей и Солнцем. Предоставлено: LucasVB/Public Domain.

Рассмотрим это с астрономической точки зрения, среднее расстояние от до 384 398,25 км. Поэтому свет проходит это расстояние примерно за секунду. Между тем, среднее 149 597 886 км, что означает, что свету требуется всего около 8 минут, чтобы совершить это путешествие.

Неудивительно тогда, почему скорость света - это показатель, используемый для определения астрономических расстояний. Когда мы говорим, что звезда, такая как , находится в 4,25 световых годах, мы подразумеваем, что для того, чтобы добраться туда, потребуется, путешествуя с постоянной скоростью 1,07 млрд км/ч, около 4 лет и 3 месяцев. Но как же мы пришли к этому весьма конкретному значению скорости света?

История изучения:

До 17 века ученые были уверены в том, что свет путешествовал с конечной скоростью, или мгновенно. Со времен древних греков до средневековых исламских богословов и ученых нового времени шли дебаты. Но до тех пор, пока ни появилась работа датского астронома Оле Рёмера (1644-1710), в которой были проведены первые количественные измерения.

В 1676 году Рёмер наблюдал, что периоды самой внутренней луны Юпитера Ио казались короче, когда Земля приближалась к Юпитеру, чем когда она удалялась. Из этого он заключил, что свет движется с конечной скоростью, и по оценкам, ему требуется около 22 минут, чтобы пересечь диаметр орбиты Земли.


Профессор Альберт Эйнштейн на 11-й лекции Джозайи Уилларда Гиббса в Технологическом Институте Карнеги 28 декабря 1934 года, где он разъясняет свою теорию о том, что материя и энергия - это одно и то же в разных формах. Предоставлено: AP Photo.

Христиан Гюйгенс использовал эту оценку и объединил её с оценкой диаметра орбиты Земли, чтобы получить оценку в 220000 км/с. Исаак Ньютон также рассказывал о расчетах Рёмера в своей основополагающей работе "Оптика" 1706 года. Внося поправки для расстояния между Землей и Солнцем, он подсчитал, что свету потребуется семь или восемь минут, чтобы добраться от одного к другому. В обоих случаях была сравнительно небольшая погрешность.

Более поздние измерения, проведенные французскими физиками Ипполитом Физо (1819-1896) и Леоном Фуко (1819-1868), уточнили эти показатели, приведя к значению 315000 км/с. И ко второй половине 19 века ученым стало известно о связи между светом и электромагнетизмом.

Это было достигнуто физиками за счет измерения электромагнитных и электростатических зарядов. Затем они обнаружили, что числовое значение было очень близко к скорости света (как измерил Физо). Исходя из его собственной работы, которая показала, что электромагнитные волны распространяются в пустом пространстве, немецкий физик Вильгельм Эдуард Вебер предположил, что свет был электромагнитной волной.

Следующий большой прорыв произошёл в начале 20-го века. В своей статье под названием "К электродинамике движущихся тел" Альберт Эйнштейн утверждает, что скорость света в вакууме, измеренная наблюдателем, имеющим постоянную скорость, одинакова во всех инерциальных системах отсчета и не зависит от движения источника или наблюдателя.


Лазерный луч, светящий через стакан с водой, показывает, скольким изменениям он подвергается, когда проходит из воздуха в стекло, в воду и обратно в воздух. Предоставлено: Bob King.

Взяв это утверждение и принцип относительности Галилео за основу, Эйнштейн вывел специальную теорию относительности, в которой скорость света в вакууме (с) является фундаментальной константой. До этого соглашение среди ученых гласило, что космос был заполнен "светоносным эфиром", который отвечает за его распространение - т.е. свет, движущийся через движущуюся среду будет плестись в хвосте среды.

Это в свою очередь означает, что измеренная скорость света была бы простой суммой его скорости через среду плюс скорость той среды. Тем не менее, теория Эйнштейна сделала концепцию неподвижного эфира бесполезной и изменила представление о пространстве и времени.

Она (теория) не только продвинула идею о том, что скорость света одинакова во всех инерциальных системах, но также была высказана мысль о том, что происходят серьезные изменения, когда вещи движутся близко к скорости света. К ним относятся пространственно-временные рамки движущегося тела, кажущегося замедляющимся, и направление движения, когда измерение происходит с точки зрения наблюдателя (т.е. релятивистские замедление времени, где время замедляется при приближении к скорости света).

Его наблюдения также согласуются с уравнениями Максвелла для электричества и магнетизма с законами механики, упрощают математические расчеты, уходя от несвязанных аргументов других ученых, и согласовываются с непосредственным наблюдением скорости света.

Насколько похожи материя и энергия?

Во второй половине 20-го века всё более точные измерения с помощью метода лазерных интерферометров и резонансных полостей далее уточняли оценки скорости света. К 1972 году группа в Национальном бюро стандартов США в Боулдере, Колорадо, использовала метод лазерной интерферометрии, чтобы получить принятое в настоящее время значение 299 792 458 м/с.

Роль в современной астрофизике:

Теория Эйнштейна о том, что скорость света в вакууме не зависит от движения источника и инерциальный системы отсчета наблюдателя, с тех пор неизменно подтверждается множеством экспериментов. Она также устанавливает верхний предел скорости, с которой все безмассовые частицы и волны (включая свет) могут распространяться в вакууме.

Один из результатов этого в том, что космологии теперь рассматривают пространство и время как единую структуру, известную как пространство-время, в которой скорость света может быть использована для определения значения обоих (т.е. световые года, световые минуты и световые секунды). Измерение скорости света также может стать важным фактором при определении ускорения расширения Вселенной.

В начале 1920-х с наблюдениями Леметра и Хаббла ученым и астрономам стало известно, что Вселенная расширяется из точки происхождения. Хаббл также заметил, чем дальше галактика, тем быстрее она движется. То, что сейчас называют постоянной Хаббла - это скорость, с которой расширяется Вселенная, она равна 68 км/с на мегапарсек.

Как быстро расширяется Вселенная?

Это явление, представленное в виде теории, означает, что некоторые галактики на самом деле могут двигаться быстрее скорости света, что может наложить ограничение на то, что мы наблюдаем в нашей Вселенной. По сути, галактики, движущиеся быстрее скорости света, пересекли бы "космологический горизонт событий", где они больше не видны для нас.

Кроме того, к 1990-м измерения красного смещения далёких галактик показали, что расширение Вселенной ускоряется за последние несколько миллиардов лет. Это привело к теории "Темной Энергии", где невидимая сила движет расширением самого пространства, а не объектов, движущихся через него (при этом не поставив ограничение на скорость света или нарушение относительности).

Наряду со специальной и общей теорией относительности современное значение скорости света в вакууме сформировалось из космологии, квантовой механики и Стандартной модели физики элементарных частиц. Она остается постоянной, когда речь идет о верхнем пределе, с которым могут двигаться безмассовые частицы и остается недостижимым барьером для частиц, имеющих массу.

Вероятно, когда-нибудь мы найдем способ превысить скорость света. Пока у нас нет практических идей о том, как это может происходить, похоже "умные деньги" на технологиях позволят нам обойти законы пространства-времени, либо путем создания варп-пузырей (ака. варп-двигатель Алькубьерре) либо туннелирование через него (ака. червоточины).

Что такое червоточины?

До этого времени мы просто будем вынуждены довольствоваться Вселенной, которую мы видим, и придерживаться исследования той части, до которой можно добраться с помощью обычных методов.

Название прочитанной вами статьи "Что такое скорость света?" .

Действительно, как? Как измерить самую высокую скорость во Вселенной в наших скромных, Земных условиях? Нам уже не нужно ломать над этим голову – ведь за несколько веков столько людей трудилось над этим вопросом, разрабатывая методы измерения скорости света. Начнем рассказ по порядку.

Скорость света – скорость распространения электромагнитных волн в вакууме. Она обозначается латинской буквой c . Скорость света равняется приблизительно 300 000 000 м/с.

Сначала над вопросом измерения скорости света вообще никто не задумывался. Есть свет – вот и отлично. Затем, в эпоху античности, среди ученых философов господствовало мнение о том, что скорость света бесконечна, то есть мгновенна. Потом было Средневековье с инквизицией, когда главным вопросом мыслящих и прогрессивных людей был вопрос «Как бы не попасть в костер?» И только в эпохи Возрождения и Просвещения мнения ученых расплодились и, конечно же, разделились.


Так, Декарт , Кеплер и Ферма были того же мнения, что и ученые античности. А вот считал, что скорость света конечна, хоть и очень велика. Собственно, он и произвел первое измерение скорости света. Точнее, предпринял первую попытку по ее измерению.

Опыт Галилея

Опыт Галилео Галилея был гениален в своей простоте. Ученый проводил эксперимент по измерению скорости света, вооружившись простыми подручными средствами. На большом и известном расстоянии друг от друга, на разных холмах, Галилей и его помощник стояли с зажженными фонарями. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. К сожалению, для того, чтобы этот эксперимент увенчался успехом, Галилею и его помощнику нужно было выбрать холмы, которые находятся на расстоянии в несколько миллионов километров друг от друга. Хотелось бы напомнить, что вы можете , оформив заявку на сайте.


Опыты Рёмера и Брэдли

Первым удачным и на удивление точным опытом по определению скорости света был опыт датского астронома Олафа Рёмера . Рёмер применил астрономический метод измерения скорости света. В 1676 он наблюдал в телескоп за спутником Юпитера Ио, и обнаружил, что время наступления затмения спутника меняется по мере отдаления Земли от Юпитера. Максимальное время запаздывания составило 22 минуты. Посчитав, что Земля удаляется от Юпитера на расстояние диаметра земной орбиты, Рёмер разделил примерное значение диаметра на время запаздывания, и получил значение 214000 километров в секунду. Конечно, такой подсчет был очень груб, расстояния между планетами были известны лишь примерно, но результат оказался относительно недалек от истины.


Опыт Брэдли. В 1728 году Джеймс Брэдли оценил скорость света наблюдая абберацию звезд. Абберация – это изменение видимого положения звезды, вызванное движением земли по орбите. Зная скорость движения Земли и измерив угол абберации, Брэдли получил значение в 301000 километров в секунду.

Опыт Физо

К результату опыта Рёмера и Брэдли тогдашний ученый мир отнесся с недоверием. Тем не менее, результат Брэдли был самым точным на протяжении сотни с лишним лет, аж до 1849 года. В тот год французский ученый Арман Физо измерил скорость света методом вращающегося затвора, без наблюдений за небесными телами, а здесь, на Земле. По сути, это был первый после Галилея лабораторный метод измерения скорости света. Приведем ниже схему его лабораторной установки.


Свет, отражаясь от зеркала, проходил через зубья колеса и отражался от еще одного зеркала, удаленного на 8,6 километров. Скорость колеса увеличивали до того момента, пока свет не становился виден в следующем зазоре. Расчеты Физо дали результат в 313000 километров в секунду. Спустя год подобный эксперимент с вращающимся зеркалом быо проведен Леоном Фуко, получившим результат 298000 километров в секунду.

С появлением мазеров и лазеров у людей появились новые возможности и способы для измерение скорости света, а развитие теории позволило также рассчитывать скорость света косвенно, без проведения прямых измерений.


Самое точное значение скорости света

Человечество накопило огромный опыт по измерению скорости света. На сегодняшний день самым точным значением скорости света принято считать значение 299 792 458 метров в секунду , полученное в 1983 году. Интересно, что дальнейшее, более точное измерение скорости света, оказалось невозможным из-за погрешностей в измерении метра . Сейчас значение метра привязано к скорости света и равняется расстоянию, которое свет проходит за 1 / 299 792 458 секунды.

Напоследок, как всегда, предлагаем посмотреть познавательное видео. Друзья, даже если перед Вами стоит такая задача, как самостоятельное измерение скорости света подручными средствами, Вы можете смело обратиться за помощью к нашим авторам. вы можете оформив заявку на сайте Заочника. Желаем Вам приятной и легкой учебы!

 


Читайте:



Рыцарь жезлов: значение (Таро)

Рыцарь жезлов: значение (Таро)

Рыцарь Посохов – Младший Аркан По астрологии Рыцарю Посохов соответствуют планета Марс с ее страстностью. Планета пребывает в Овне – фактически...

Блюда с белыми грибами. Рецепты. Маринованные боровики на зиму – пошаговый рецепт с фото, как мариновать в домашних условиях

Блюда с белыми грибами. Рецепты. Маринованные боровики на зиму – пошаговый рецепт с фото, как мариновать в домашних условиях

Боровик - поистине царь среди грибов. В то время как другие плодовые тела приходится вываривать, чтобы затем жарить, белый не нуждается в...

Курица гриль - пошаговые рецепты маринада и технология приготовления в духовке, микроволновке или сковороде

Курица гриль - пошаговые рецепты маринада и технология приготовления в духовке, микроволновке или сковороде

Курица гриль воспринимается многими как не очень полезное блюдо. Немалую роль в создании такой репутации сыграла магазинная птица, которая не...

Как правильно приготовить курицу гриль

Как правильно приготовить курицу гриль

1. Курицу заранее необходимо замариновать в соли с паприкой. Для этого нужно промыть курицу изнутри и снаружи и обильно обмазать солью и паприкой....

feed-image RSS