home - Electrical equipment
More evidence that our solar system is uniquely designed to support life. What is the difference between our solar system and the space beyond? Question or statement

The endless space that surrounds us is not just a huge airless space and emptiness. Here everything is subject to a single and strict order, everything has its own rules and obeys the laws of physics. Everything is in constant motion and is constantly interconnected with each other. This is a system in which each celestial body occupies its specific place. The center of the Universe is surrounded by galaxies, among which is our Milky Way. Our galaxy, in turn, is formed by stars around which large and small planets with their natural satellites revolve. The picture of a universal scale is completed by wandering objects - comets and asteroids.

In this endless cluster of stars our Solar System is located - a tiny astrophysical object by cosmic standards, which includes our cosmic home - planet Earth. For us earthlings, the size of the solar system is colossal and difficult to perceive. In terms of the scale of the Universe, these are tiny numbers - only 180 astronomical units or 2.693e+10 km. Here, too, everything is subject to its own laws, has its own clearly defined place and sequence.

Brief characteristics and description

The interstellar medium and the stability of the Solar System are ensured by the location of the Sun. Its location is an interstellar cloud included in the Orion-Cygnus arm, which in turn is part of our galaxy. From a scientific point of view, our Sun is located on the periphery, 25 thousand light years from the center of the Milky Way, if we consider the galaxy in the diametrical plane. In turn, the movement of the solar system around the center of our galaxy is carried out in orbit. A complete revolution of the Sun around the center of the Milky Way is carried out in different ways, within 225-250 million years and is one galactic year. The orbit of the Solar System has an inclination of 600 to the galactic plane. Nearby, in the neighborhood of our system, other stars and other solar systems with their large and small planets are running around the center of the galaxy.

The approximate age of the Solar System is 4.5 billion years. Like most objects in the Universe, our star was formed as a result of the Big Bang. The origin of the Solar System is explained by the same laws that operated and continue to operate today in the fields of nuclear physics, thermodynamics and mechanics. First, a star was formed, around which, due to the ongoing centripetal and centrifugal processes, the formation of planets began. The Sun was formed from a dense accumulation of gases - a molecular cloud, which was the product of a colossal Explosion. As a result of centripetal processes, molecules of hydrogen, helium, oxygen, carbon, nitrogen and other elements were compressed into one continuous and dense mass.

The result of grandiose and such large-scale processes was the formation of a protostar, in the structure of which thermonuclear fusion began. We observe this long process, which began much earlier, today, looking at our Sun 4.5 billion years after its formation. The scale of the processes occurring during the formation of a star can be imagined by assessing the density, size and mass of our Sun:

  • density is 1.409 g/cm3;
  • the volume of the Sun is almost the same figure - 1.40927x1027 m3;
  • star mass – 1.9885x1030 kg.

Today our Sun is an ordinary astrophysical object in the Universe, not the smallest star in our galaxy, but far from the largest. The Sun is in its mature age, being not only the center of the solar system, but also the main factor in the emergence and existence of life on our planet.

The final structure of the solar system falls on the same period, with a difference of plus or minus half a billion years. The mass of the entire system, where the Sun interacts with other celestial bodies of the Solar System, is 1.0014 M☉. In other words, all the planets, satellites and asteroids, cosmic dust and particles of gases revolving around the Sun, compared to the mass of our star, are a drop in the bucket.

The way we have an idea of ​​our star and the planets revolving around the Sun is a simplified version. The first mechanical heliocentric model of the solar system with a clock mechanism was presented to the scientific community in 1704. It should be taken into account that the orbits of the planets of the solar system do not all lie in the same plane. They rotate around at a certain angle.

The model of the solar system was created on the basis of a simpler and more ancient mechanism - tellurium, with the help of which the position and movement of the Earth in relation to the Sun was simulated. With the help of tellurium, it was possible to explain the principle of the movement of our planet around the Sun and to calculate the duration of the earth's year.

The simplest model of the solar system is presented in school textbooks, where each of the planets and other celestial bodies occupies a certain place. It should be taken into account that the orbits of all objects revolving around the Sun are located at different angles to the central plane of the Solar System. The planets of the Solar System are located at different distances from the Sun, rotate at different speeds and rotate differently around their own axis.

A map - a diagram of the Solar System - is a drawing where all objects are located in the same plane. In this case, such an image gives an idea only of the sizes of celestial bodies and the distances between them. Thanks to this interpretation, it became possible to understand the location of our planet among other planets, to assess the scale of celestial bodies and to give an idea of ​​the enormous distances that separate us from our celestial neighbors.

Planets and other objects of the solar system

Almost the entire universe is made up of myriads of stars, among which there are large and small solar systems. The presence of a star with its own satellite planets is a common occurrence in space. The laws of physics are the same everywhere and our solar system is no exception.

If you ask yourself how many planets there were in the solar system and how many there are today, it is quite difficult to answer unequivocally. Currently, the exact location of 8 major planets is known. In addition, 5 small dwarf planets revolve around the Sun. The existence of a ninth planet is currently disputed in scientific circles.

The entire solar system is divided into groups of planets, which are arranged in the following order:

Terrestrial planets:

  • Mercury;
  • Venus;
  • Mars.

Gas planets - giants:

  • Jupiter;
  • Saturn;
  • Uranus;
  • Neptune.

All planets presented in the list differ in structure and have different astrophysical parameters. Which planet is larger or smaller than the others? The sizes of the planets of the solar system are different. The first four objects, similar in structure to the Earth, have a solid rock surface and are endowed with an atmosphere. Mercury, Venus and Earth are the inner planets. Mars closes this group. Following it are the gas giants: Jupiter, Saturn, Uranus and Neptune - dense, spherical gas formations.

The process of life of the planets of the solar system does not stop for a second. Those planets that we see in the sky today are the arrangement of celestial bodies that the planetary system of our star has at the current moment. The state that existed at the dawn of the formation of the solar system is strikingly different from what has been studied today.

The astrophysical parameters of modern planets are indicated by the table, which also shows the distance of the planets of the Solar System to the Sun.

The existing planets of the solar system are approximately the same age, but there are theories that in the beginning there were more planets. This is evidenced by numerous ancient myths and legends that describe the presence of other astrophysical objects and disasters that led to the death of the planet. This is confirmed by the structure of our star system, where, along with planets, there are objects that are products of violent cosmic cataclysms.

A striking example of such activity is the asteroid belt, located between the orbits of Mars and Jupiter. Objects of extraterrestrial origin are concentrated here in huge numbers, mainly represented by asteroids and small planets. It is these irregularly shaped fragments that are considered in human culture to be the remains of the protoplanet Phaeton, which perished billions of years ago as a result of a large-scale cataclysm.

In fact, there is an opinion in scientific circles that the asteroid belt was formed as a result of the destruction of a comet. Astronomers have discovered the presence of water on the large asteroid Themis and on the small planets Ceres and Vesta, which are the largest objects in the asteroid belt. Ice found on the surface of asteroids may indicate the cometary nature of the formation of these cosmic bodies.

Previously one of the major planets, Pluto is not considered a full-fledged planet today.

Pluto, which was previously ranked among the large planets of the solar system, is today reduced to the size of dwarf celestial bodies revolving around the Sun. Pluto, along with Haumea and Makemake, the largest dwarf planets, is located in the Kuiper belt.

These dwarf planets of the solar system are located in the Kuiper belt. The region between the Kuiper belt and the Oort cloud is the most distant from the Sun, but space is not empty there either. In 2005, the most distant celestial body of our solar system, the dwarf planet Eris, was discovered there. The process of exploration of the most distant regions of our solar system continues. The Kuiper Belt and Oort Cloud are hypothetically the border regions of our star system, the visible boundary. This cloud of gas is located at a distance of one light year from the Sun and is the region where comets, the wandering satellites of our star, are born.

Characteristics of the planets of the solar system

The terrestrial group of planets is represented by the planets closest to the Sun - Mercury and Venus. These two cosmic bodies of the solar system, despite the similarity in physical structure with our planet, are a hostile environment for us. Mercury is the smallest planet in our star system and is closest to the Sun. The heat of our star literally incinerates the surface of the planet, practically destroying its atmosphere. The distance from the surface of the planet to the Sun is 57,910,000 km. In size, only 5 thousand km in diameter, Mercury is inferior to most large satellites, which are dominated by Jupiter and Saturn.

Saturn's satellite Titan has a diameter of over 5 thousand km, Jupiter's satellite Ganymede has a diameter of 5265 km. Both satellites are second in size only to Mars.

The very first planet rushes around our star at tremendous speed, making a full revolution around our star in 88 Earth days. It is almost impossible to notice this small and nimble planet in the starry sky due to the close presence of the solar disk. Among the terrestrial planets, it is on Mercury that the largest daily temperature differences are observed. While the surface of the planet facing the Sun heats up to 700 degrees Celsius, the back side of the planet is immersed in universal cold with temperatures up to -200 degrees.

The main difference between Mercury and all the planets in the solar system is its internal structure. Mercury has the largest iron-nickel inner core, which accounts for 83% of the mass of the entire planet. However, even this uncharacteristic quality did not allow Mercury to have its own natural satellites.

Next to Mercury is the closest planet to us - Venus. The distance from Earth to Venus is 38 million km, and it is very similar to our Earth. The planet has almost the same diameter and mass, slightly inferior in these parameters to our planet. However, in all other respects, our neighbor is fundamentally different from our cosmic home. The period of Venus' revolution around the Sun is 116 Earth days, and the planet rotates extremely slowly around its own axis. The average surface temperature of Venus rotating around its axis over 224 Earth days is 447 degrees Celsius.

Like its predecessor, Venus lacks the physical conditions conducive to the existence of known life forms. The planet is surrounded by a dense atmosphere consisting mainly of carbon dioxide and nitrogen. Both Mercury and Venus are the only planets in the solar system that do not have natural satellites.

Earth is the last of the inner planets of the solar system, located at a distance of approximately 150 million km from the Sun. Our planet makes one revolution around the Sun every 365 days. Rotates around its own axis in 23.94 hours. The Earth is the first of the celestial bodies located on the path from the Sun to the periphery, which has a natural satellite.

Digression: The astrophysical parameters of our planet are well studied and known. Earth is the largest and densest planet of all the other inner planets in the solar system. It is here that natural physical conditions have been preserved under which the existence of water is possible. Our planet has a stable magnetic field that holds the atmosphere. Earth is the most well studied planet. The subsequent study is mainly of not only theoretical interest, but also practical one.

Mars closes the parade of terrestrial planets. The subsequent study of this planet is mainly not only of theoretical interest, but also of practical interest, associated with human exploration of extraterrestrial worlds. Astrophysicists are attracted not only by the relative proximity of this planet to Earth (on average 225 million km), but also by the absence of difficult climatic conditions. The planet is surrounded by an atmosphere, although it is in an extremely rarefied state, has its own magnetic field, and temperature differences on the surface of Mars are not as critical as on Mercury and Venus.

Like Earth, Mars has two satellites - Phobos and Deimos, the natural nature of which has recently been questioned. Mars is the last fourth planet with a rocky surface in the solar system. Following the asteroid belt, which is a kind of inner boundary of the solar system, begins the kingdom of gas giants.

The largest cosmic celestial bodies of our solar system

The second group of planets that are part of the system of our star has bright and large representatives. These are the largest objects in our solar system, which are considered the outer planets. Jupiter, Saturn, Uranus and Neptune are the most distant from our star, huge by earthly standards and their astrophysical parameters. These celestial bodies are distinguished by their massiveness and composition, which is mainly gaseous in nature.

The main beauties of the solar system are Jupiter and Saturn. The total mass of this pair of giants would be quite enough to fit in it the mass of all known celestial bodies of the Solar System. So Jupiter, the largest planet in the solar system, weighs 1876.64328 1024 kg, and the mass of Saturn is 561.80376 1024 kg. These planets have the most natural satellites. Some of them, Titan, Ganymede, Callisto and Io, are the largest satellites of the Solar System and are comparable in size to the terrestrial planets.

The largest planet in the solar system, Jupiter, has a diameter of 140 thousand km. In many respects, Jupiter more closely resembles a failed star - a striking example of the existence of a small solar system. This is evidenced by the size of the planet and astrophysical parameters - Jupiter is only 10 times smaller than our star. The planet rotates around its own axis quite quickly - only 10 Earth hours. The number of satellites, of which 67 have been identified to date, is also striking. The behavior of Jupiter and its moons is very similar to the model of the solar system. Such a number of natural satellites for one planet raises a new question: how many planets were there in the Solar System at the early stage of its formation. It is assumed that Jupiter, having a powerful magnetic field, turned some planets into its natural satellites. Some of them - Titan, Ganymede, Callisto and Io - are the largest satellites of the solar system and are comparable in size to the terrestrial planets.

Slightly smaller in size than Jupiter is its smaller brother, the gas giant Saturn. This planet, like Jupiter, consists mainly of hydrogen and helium - gases that are the basis of our star. With its size, the diameter of the planet is 57 thousand km, Saturn also resembles a protostar that has stopped in its development. The number of satellites of Saturn is slightly inferior to the number of satellites of Jupiter - 62 versus 67. Saturn's satellite Titan, like Io, a satellite of Jupiter, has an atmosphere.

In other words, the largest planets Jupiter and Saturn with their systems of natural satellites strongly resemble small solar systems, with their clearly defined center and system of movement of celestial bodies.

Behind the two gas giants come the cold and dark worlds, the planets Uranus and Neptune. These celestial bodies are located at a distance of 2.8 billion km and 4.49 billion km. from the Sun, respectively. Due to their enormous distance from our planet, Uranus and Neptune were discovered relatively recently. Unlike the other two gas giants, Uranus and Neptune contain large quantities of frozen gases - hydrogen, ammonia and methane. These two planets are also called ice giants. Uranus is smaller in size than Jupiter and Saturn and ranks third in the solar system. The planet represents the pole of cold of our star system. The average temperature on the surface of Uranus is -224 degrees Celsius. Uranus differs from other celestial bodies revolving around the Sun by its strong tilt on its own axis. The planet seems to be rolling, revolving around our star.

Like Saturn, Uranus is surrounded by a hydrogen-helium atmosphere. Neptune, unlike Uranus, has a different composition. The presence of methane in the atmosphere is indicated by the blue color of the planet's spectrum.

Both planets move slowly and majestically around our star. Uranus orbits the Sun in 84 Earth years, and Neptune orbits our star twice as long - 164 Earth years.

Finally

Our Solar System is a huge mechanism in which each planet, all satellites of the Solar System, asteroids and other celestial bodies move along a clearly defined route. The laws of astrophysics apply here and have not changed for 4.5 billion years. Along the outer edges of our solar system, dwarf planets move in the Kuiper belt. Comets are frequent guests of our star system. These space objects visit the inner regions of the Solar System with a periodicity of 20-150 years, flying within sight of our planet.

If you are tired of advertising on this site, download our mobile application here: https://play.google.com/store/apps/details?id=com.news.android.military or below by clicking on the Google Play logo. There we reduced the number of advertising blocks specifically for our regular audience.
Also in the application:
- even more news
- updates 24 hours a day
- notifications about major events

If you have any questions, leave them in the comments below the article. We or our visitors will be happy to answer them

Definition and classification of celestial bodies, basic physical and chemical characteristics of astronomical objects of the Solar system.

The content of the article:

Celestial bodies are objects located in the Observable Universe. Such objects can be natural physical bodies or their associations. All of them are characterized by isolation, and also represent a single structure connected by gravity or electromagnetism. Astronomy studies this category. This article brings to your attention the classification of celestial bodies of the Solar System, as well as a description of their main characteristics.

Classification of celestial bodies of the Solar System


Each celestial body has special characteristics, for example, the method of generation, chemical composition, size, etc. This makes it possible to classify objects by combining them into groups. We will describe what celestial bodies there are in the Solar System: stars, planets, satellites, asteroids, comets, etc.

Classification of celestial bodies of the Solar System by composition:

  • Silicate celestial bodies. This group of celestial bodies is called silicate, because. the main component of all its representatives are stone-metal rocks (about 99% of the total body mass). The silicate component is represented by such refractory substances as silicon, calcium, iron, aluminum, magnesium, sulfur, etc. Ice and gas components (water, ice, nitrogen, carbon dioxide, oxygen, hydrogen helium) are also present, but their content is negligible. This category includes 4 planets (Venus, Mercury, Earth and Mars), satellites (Moon, Io, Europa, Triton, Phobos, Deimos, Amalthea, etc.), more than a million asteroids orbiting between the orbits of two planets - Jupiter and Mars (Pallada , Hygiea, Vesta, Ceres, etc.). The density indicator is from 3 grams per cubic centimeter or more.
  • Icy celestial bodies. This group is the largest in the Solar System. The main component is the ice component (carbon dioxide, nitrogen, water ice, oxygen, ammonia, methane, etc.). The silicate component is present in smaller quantities, and the gas volume is extremely insignificant. This group includes one planet Pluto, large satellites (Ganymede, Titan, Callisto, Charon, etc.), as well as all comets.
  • Combined celestial bodies. The composition of representatives of this group is characterized by the presence of all three components in large quantities, i.e. silicate, gas and ice. Celestial bodies with a combined composition include the Sun and the giant planets (Neptune, Saturn, Jupiter and Uranus). These objects are characterized by rapid rotation.

Characteristics of the star Sun


The sun is a star, i.e. is an accumulation of gas with incredible volumes. It has its own gravity (an interaction characterized by attraction), with the help of which all its components are held. Inside any star, and therefore inside the Sun, thermonuclear fusion reactions occur, the product of which is colossal energy.

The sun has a core around which a radiation zone is formed, where energy transfer occurs. Next comes the convection zone, in which magnetic fields and movements of solar matter arise. The visible part of the Sun can only be called the surface of this star conditionally. A more correct formulation is the photosphere or sphere of light.

The gravity inside the Sun is so strong that it takes hundreds of thousands of years for a photon from its core to reach the surface of the star. Moreover, its path from the surface of the Sun to the Earth is only 8 minutes. The density and size of the Sun make it possible to attract other objects in the solar system. The acceleration of gravity (gravity) in the surface zone is almost 28 m/s 2 .

The characteristics of the celestial body of the star Sun have the following form:

  1. Chemical composition. The main components of the Sun are helium and hydrogen. Naturally, the star also includes other elements, but their specific gravity is very negligible.
  2. Temperature. The temperature varies significantly in different zones, for example, in the core it reaches 15,000,000 degrees Celsius, and in the visible part - 5,500 degrees Celsius.
  3. Density. It is 1.409 g/cm3. The highest density is noted in the core, the lowest - on the surface.
  4. Weight. If we describe the mass of the Sun without mathematical abbreviations, the number will look like 1.988.920.000.000.000.000.000.000.000.000 kg.
  5. Volume. The full value is 1.412.000.000.000.000.000.000.000.000.000 cubic kilograms.
  6. Diameter. This figure is 1,391,000 km.
  7. Radius. The radius of the Sun star is 695500 km.
  8. Orbit of a celestial body. The sun has its own orbit, which runs around the center of the Milky Way. A complete revolution takes 226 million years. Scientists' calculations have shown that the speed is incredibly high - almost 782,000 kilometers per hour.

Characteristics of the planets of the solar system


Planets are celestial bodies that orbit around a star or its remnants. The large weight allows the planets to become round under the influence of their own gravity. However, the size and weight are not sufficient to initiate thermonuclear reactions. Let us examine in more detail the characteristics of the planets using examples of some representatives of this category that are part of the Solar System.

Mars ranks second in terms of study among the planets. It is the 4th farthest from the Sun. Its dimensions allow it to take 7th place in the ranking of the most voluminous celestial bodies in the Solar System. Mars has an inner core surrounded by an outer liquid core. Next is the silicate mantle of the planet. And after the intermediate layer comes the crust, which has different thicknesses in different parts of the celestial body.

Let's take a closer look at the characteristics of Mars:

  • Chemical composition of a celestial body. The main elements that make up Mars are iron, sulfur, silicates, basalt, and iron oxide.
  • Temperature. The average is -50°C.
  • Density - 3.94 g/cm3.
  • Weight - 641.850.000.000.000.000.000.000 kg.
  • Volume - 163.180.000.000 km 3.
  • Diameter - 6780 km.
  • Radius - 3390 km.
  • Gravity acceleration is 3.711 m/s 2 .
  • Orbit. It runs around the Sun. It has a rounded trajectory, which is far from ideal, because at different times, the distance of the celestial body from the center of the solar system has different indicators - 206 and 249 million km.
Pluto belongs to the category of dwarf planets. Has a rocky core. Some researchers suggest that it is formed not only from rocks, but may also include ice. It is covered with an icy mantle. There is frozen water and methane on the surface. The atmosphere presumably includes methane and nitrogen.

Pluto has the following characteristics:

  1. Compound. The main components are stone and ice.
  2. Temperature. The average temperature on Pluto is -229 degrees Celsius.
  3. Density - about 2 g per 1 cm3.
  4. The mass of the celestial body is 13.105.000.000.000.000.000.000 kg.
  5. Volume - 7,150,000,000 km 3 .
  6. Diameter - 2374 km.
  7. Radius - 1187 km.
  8. Gravity acceleration is 0.62 m/s 2 .
  9. Orbit. The planet revolves around the Sun, but the orbit is characterized by eccentricity, i.e. in one period it moves away to 7.4 billion km, in another it approaches 4.4 billion km. The orbital speed of the celestial body reaches 4.6691 km/s.
Uranus is a planet that was discovered using a telescope in 1781. It has a system of rings and a magnetosphere. Inside Uranus there is a core consisting of metals and silicon. It is surrounded by water, methane and ammonia. Next comes a layer of liquid hydrogen. There is a gas atmosphere on the surface.

Main characteristics of Uranus:

  • Chemical composition. This planet is made up of a combination of chemical elements. In large quantities it includes silicon, metals, water, methane, ammonia, hydrogen, etc.
  • Temperature of a celestial body. The average temperature is -224°C.
  • Density - 1.3 g/cm3.
  • Weight - 86.832.000.000.000.000.000.000 kg.
  • Volume - 68.340.000.000 km 3.
  • Diameter - 50724 km.
  • Radius - 25362 km.
  • Gravity acceleration is 8.69 m/s2.
  • Orbit. The center around which Uranus revolves is also the Sun. The orbit is slightly elongated. The orbital speed is 6.81 km/s.

Characteristics of satellites of celestial bodies


A satellite is an object located in the Visible Universe, which orbits not around a star, but around another celestial body under the influence of its gravity and along a certain trajectory. Let us describe some satellites and characteristics of these cosmic celestial bodies.

Deimos, the satellite of Mars, which is considered one of the smallest, is described as follows:

  1. Shape - similar to a triaxial ellipsoid.
  2. Dimensions - 15x12.2x10.4 km.
  3. Weight - 1.480.000.000.000.000 kg.
  4. Density - 1.47 g/cm3.
  5. Compound. The satellite's composition mainly includes rocky rocks and regolith. There is no atmosphere.
  6. Gravity acceleration is 0.004 m/s 2 .
  7. Temperature - -40°C.
Callisto is one of the many satellites of Jupiter. It is the second largest in the satellite category and ranks first among celestial bodies in the number of craters on the surface.

Characteristics of Callisto:

  • The shape is round.
  • Diameter - 4820 km.
  • Weight - 107.600.000.000.000.000.000.000 kg.
  • Density - 1.834 g/cm3.
  • Composition - carbon dioxide, molecular oxygen.
  • Gravity acceleration is 1.24 m/s 2 .
  • Temperature - -139.2°C.
Oberon or Uranus IV is the natural satellite of Uranus. It is the 9th largest in the solar system. It has no magnetic field and no atmosphere. Numerous craters have been found on the surface, so some scientists consider it to be a rather old satellite.

Consider the characteristics of Oberon:

  1. The shape is round.
  2. Diameter - 1523 km.
  3. Weight - 3.014.000.000.000.000.000.000 kg.
  4. Density - 1.63 g/cm3.
  5. Composition: stone, ice, organic matter.
  6. Gravity acceleration is 0.35 m/s 2 .
  7. Temperature - -198°C.

Characteristics of asteroids in the Solar System


Asteroids are large blocks of rock. They are mainly located in the asteroid belt between the orbits of Jupiter and Mars. They can leave their orbits towards the Earth and the Sun.

A striking representative of this class is Hygiea, one of the largest asteroids. This celestial body is located in the main asteroid belt. You can even see it with binoculars, but not always. It is clearly visible during the perihelion period, i.e. at the moment when the asteroid is at the point of its orbit closest to the Sun. Has a dull dark surface.

Main characteristics of Hygeia:

  • Diameter - 4 07 km.
  • Density - 2.56 g/cm3.
  • Weight - 90.300.000.000.000.000.000 kg.
  • Gravity acceleration is 0.15 m/s 2 .
  • Orbital speed. The average value is 16.75 km/s.
Asteroid Matilda is located in the main belt. It has a fairly low rotation speed around its axis: 1 revolution occurs in 17.5 Earth days. It contains many carbon compounds. The study of this asteroid was carried out using a spacecraft. The largest crater on Matilda is 20 km long.

Matilda's main characteristics are:

  1. Diameter is almost 53 km.
  2. Density - 1.3 g/cm3.
  3. Weight - 103.300.000.000.000.000 kg.
  4. Gravity acceleration is 0.01 m/s 2 .
  5. Orbit. Matilda completes its orbit in 1,572 Earth days.
Vesta is one of the largest asteroids in the main asteroid belt. It can be observed without using a telescope, i.e. with the naked eye, because The surface of this asteroid is quite bright. If Vesta's shape were more rounded and symmetrical, it could be classified as a dwarf planet.

This asteroid has an iron-nickel core covered by a rocky mantle. The largest crater on Vesta is 460 km long and 13 km deep.

Let us list the main physical characteristics of Vesta:

  • Diameter - 525 km.
  • Weight. The value is in the range of 260,000,000,000,000,000,000 kg.
  • Density is about 3.46 g/cm 3 .
  • Gravity acceleration - 0.22 m/s 2 .
  • Orbital speed. The average orbital speed is 19.35 km/s. One revolution around the Vesta axis takes 5.3 hours.

Characteristics of comets of the Solar system


A comet is a celestial body of small size. The orbits of comets pass around the Sun and have an elongated shape. These objects, approaching the Sun, form a trail consisting of gas and dust. Sometimes he remains in the form of a coma, i.e. a cloud that stretches over a huge distance - from 100,000 to 1.4 million km from the comet's nucleus. In other cases, the trace remains in the form of a tail, the length of which can reach 20 million km.

Halley is a celestial body of a group of comets, known to mankind since ancient times, because it can be seen with the naked eye.

Characteristics of Halley:

  1. Weight. Approximately equal to 220,000,000,000,000 kg.
  2. Density - 600 kg/m3.
  3. The period of revolution around the Sun is less than 200 years. The approach to the star occurs in approximately 75-76 years.
  4. Composition: frozen water, metal and silicates.
Comet Hale-Bopp was observed by humanity for almost 18 months, which indicates its long period. It is also called the Great Comet of 1997. A distinctive feature of this comet is the presence of 3 types of tails. Along with the gas and dust tails, it is followed by a sodium tail, the length of which reaches 50 million km.

Composition of the comet: deuterium (heavy water), organic compounds (formic, acetic acid, etc.), argon, crypto, etc. The period of revolution around the Sun is 2534 years. There is no reliable data on the physical characteristics of this comet.

Comet Tempel is famous for being the first comet to have a probe brought to its surface from Earth.

Characteristics of Comet Tempel:

  • Weight - within 79,000,000,000,000 kg.
  • Dimensions. Length - 7.6 km, width - 4.9 km.
  • Compound. Water, carbon dioxide, organic compounds, etc.
  • Orbit. It changes as the comet passes near Jupiter, gradually decreasing. Latest data: one revolution around the Sun is 5.52 years.


Over the years of studying the solar system, scientists have collected many interesting facts about celestial bodies. Let's consider those that depend on chemical and physical characteristics:
  • The largest celestial body in terms of mass and diameter is the Sun, Jupiter is in second place, and Saturn is in third place.
  • The greatest gravity is inherent in the Sun, second place is occupied by Jupiter, and third place by Neptune.
  • Jupiter's gravity actively attracts space debris. Its level is so great that the planet is capable of pulling debris from Earth's orbit.
  • The hottest celestial body in the Solar System is the Sun - this is no secret to anyone. But the next indicator of 480 degrees Celsius was recorded on Venus - the second planet farthest from the center. It would be logical to assume that second place should go to Mercury, whose orbit is closer to the Sun, but in fact the temperature there is lower - 430°C. This is due to the presence of Venus and the lack of an atmosphere on Mercury that can retain heat.
  • Uranus is considered the coldest planet.
  • To the question of which celestial body has the greatest density within the Solar System, the answer is simple - the density of the Earth. In second place is Mercury, and in third is Venus.
  • The trajectory of Mercury's orbit ensures that the length of a day on the planet is equal to 58 Earth days. The duration of one day on Venus is equal to 243 Earth days, while a year lasts only 225.
Watch a video about the celestial bodies of the Solar System:


Studying the characteristics of celestial bodies allows humanity to make interesting discoveries, substantiate certain patterns, and also expand general knowledge about the Universe.

Universe (space)- this is the entire world around us, limitless in time and space and infinitely varied in the forms that eternally moving matter takes. The boundlessness of the Universe can be partially imagined on a clear night with billions of different sizes of luminous flickering points in the sky, representing distant worlds. Rays of light at a speed of 300,000 km/s from the most distant parts of the Universe reach the Earth in about 10 billion years.

According to scientists, the Universe was formed as a result of the “Big Bang” 17 billion years ago.

It consists of clusters of stars, planets, cosmic dust and other cosmic bodies. These bodies form systems: planets with satellites (for example, the solar system), galaxies, metagalaxies (clusters of galaxies).

Galaxy(late Greek galaktikos- milky, milky, from Greek gala- milk) is a vast star system that consists of many stars, star clusters and associations, gas and dust nebulae, as well as individual atoms and particles scattered in interstellar space.

There are many galaxies of different sizes and shapes in the Universe.

All stars visible from Earth are part of the Milky Way galaxy. It got its name due to the fact that most stars can be seen on a clear night in the form of the Milky Way - a whitish, blurry stripe.

In total, the Milky Way Galaxy contains about 100 billion stars.

Our galaxy is in constant rotation. The speed of its movement in the Universe is 1.5 million km/h. If you look at our galaxy from its north pole, the rotation occurs clockwise. The Sun and the stars closest to it complete a revolution around the center of the galaxy every 200 million years. This period is considered galactic year.

Similar in size and shape to the Milky Way galaxy is the Andromeda Galaxy, or Andromeda Nebula, which is located at a distance of approximately 2 million light years from our galaxy. Light year— the distance traveled by light in a year, approximately equal to 10 13 km (the speed of light is 300,000 km/s).

To visualize the study of the movement and location of stars, planets and other celestial bodies, the concept of the celestial sphere is used.

Rice. 1. Main lines of the celestial sphere

Celestial sphere is an imaginary sphere of arbitrarily large radius, in the center of which the observer is located. The stars, Sun, Moon, and planets are projected onto the celestial sphere.

The most important lines on the celestial sphere are: the plumb line, zenith, nadir, celestial equator, ecliptic, celestial meridian, etc. (Fig. 1).

Plumb line- a straight line passing through the center of the celestial sphere and coinciding with the direction of the plumb line at the observation location. For an observer on the Earth's surface, a plumb line passes through the center of the Earth and the observation point.

A plumb line intersects the surface of the celestial sphere at two points - zenith, above the observer's head, and nadire - diametrically opposite point.

The great circle of the celestial sphere, the plane of which is perpendicular to the plumb line, is called mathematical horizon. It divides the surface of the celestial sphere into two halves: visible to the observer, with the vertex at the zenith, and invisible, with the vertex at the nadir.

The diameter around which the celestial sphere rotates is axis mundi. It intersects with the surface of the celestial sphere at two points - north pole of the world And south pole of the world. The north pole is the one from which the celestial sphere rotates clockwise when looking at the sphere from the outside.

The great circle of the celestial sphere, the plane of which is perpendicular to the axis of the world, is called celestial equator. It divides the surface of the celestial sphere into two hemispheres: northern, with its summit at the north celestial pole, and southern, with its peak at the south celestial pole.

The great circle of the celestial sphere, the plane of which passes through the plumb line and the axis of the world, is the celestial meridian. It divides the surface of the celestial sphere into two hemispheres - eastern And western.

The line of intersection of the plane of the celestial meridian and the plane of the mathematical horizon - noon line.

Ecliptic(from Greek ekieipsis- eclipse) is a large circle of the celestial sphere along which the visible annual movement of the Sun, or more precisely, its center, occurs.

The plane of the ecliptic is inclined to the plane of the celestial equator at an angle of 23°26"21".

To make it easier to remember the location of stars in the sky, people in ancient times came up with the idea of ​​combining the brightest of them into constellations.

Currently, 88 constellations are known, which bear the names of mythical characters (Hercules, Pegasus, etc.), zodiac signs (Taurus, Pisces, Cancer, etc.), objects (Libra, Lyra, etc.) (Fig. 2).

Rice. 2. Summer-autumn constellations

Origin of galaxies. The solar system and its individual planets still remain an unsolved mystery of nature. There are several hypotheses. It is currently believed that our galaxy was formed from a gas cloud consisting of hydrogen. At the initial stage of galaxy evolution, the first stars formed from the interstellar gas-dust medium, and 4.6 billion years ago, the Solar System.

Composition of the solar system

The set of celestial bodies moving around the Sun as a central body forms Solar system. It is located almost on the outskirts of the Milky Way galaxy. The solar system is involved in rotation around the center of the galaxy. The speed of its movement is about 220 km/s. This movement occurs in the direction of the constellation Cygnus.

The composition of the Solar System can be represented in the form of a simplified diagram shown in Fig. 3.

Over 99.9% of the mass of matter in the Solar System comes from the Sun and only 0.1% from all its other elements.

Hypothesis of I. Kant (1775) - P. Laplace (1796)

Hypothesis of D. Jeans (early 20th century)

Hypothesis of Academician O.P. Schmidt (40s of the XX century)

Hypothesis akalemic by V. G. Fesenkov (30s of the XX century)

Planets were formed from gas-dust matter (in the form of a hot nebula). Cooling is accompanied by compression and an increase in the speed of rotation of some axis. Rings appeared at the equator of the nebula. The substance of the rings collected into hot bodies and gradually cooled

A larger star once passed by the Sun, and its gravity pulled out a stream of hot matter (prominence) from the Sun. Condensations formed, from which planets were later formed.

The gas and dust cloud revolving around the Sun should have taken on a solid shape as a result of the collision of particles and their movement. The particles combined into condensations. The attraction of smaller particles by condensations should have contributed to the growth of the surrounding matter. The orbits of the condensations should have become almost circular and lying almost in the same plane. Condensations were the embryos of planets, absorbing almost all the matter from the spaces between their orbits

The Sun itself arose from the rotating cloud, and the planets emerged from secondary condensations in this cloud. Further, the Sun greatly decreased and cooled to its present state

Rice. 3. Composition of the Solar System

Sun

Sun- this is a star, a giant hot ball. Its diameter is 109 times the diameter of the Earth, its mass is 330,000 times the mass of the Earth, but its average density is low - only 1.4 times the density of water. The Sun is located at a distance of about 26,000 light years from the center of our galaxy and revolves around it, making one revolution in about 225-250 million years. The orbital speed of the Sun is 217 km/s—so it travels one light year every 1,400 Earth years.

Rice. 4. Chemical composition of the Sun

The pressure on the Sun is 200 billion times higher than at the surface of the Earth. The density of solar matter and pressure quickly increase in depth; the increase in pressure is explained by the weight of all overlying layers. The temperature on the surface of the Sun is 6000 K, and inside it is 13,500,000 K. The characteristic lifetime of a star like the Sun is 10 billion years.

Table 1. General information about the Sun

The chemical composition of the Sun is about the same as that of most other stars: about 75% is hydrogen, 25% is helium and less than 1% is all other chemical elements (carbon, oxygen, nitrogen, etc.) (Fig. 4 ).

The central part of the Sun with a radius of approximately 150,000 km is called the solar core. This is a zone of nuclear reactions. The density of the substance here is approximately 150 times higher than the density of water. The temperature exceeds 10 million K (on the Kelvin scale, in terms of degrees Celsius 1 °C = K - 273.1) (Fig. 5).

Above the core, at distances of about 0.2-0.7 solar radii from its center, is radiant energy transfer zone. Energy transfer here is carried out by absorption and emission of photons by individual layers of particles (see Fig. 5).

Rice. 5. Structure of the Sun

Photon(from Greek phos- light), an elementary particle capable of existing only by moving at the speed of light.

Closer to the surface of the Sun, vortex mixing of the plasma occurs, and energy is transferred to the surface

mainly by the movements of the substance itself. This method of energy transfer is called convection, and the layer of the Sun where it occurs is convective zone. The thickness of this layer is approximately 200,000 km.

Above the convective zone is the solar atmosphere, which constantly fluctuates. Both vertical and horizontal waves with lengths of several thousand kilometers propagate here. Oscillations occur with a period of about five minutes.

The inner layer of the Sun's atmosphere is called photosphere. It consists of light bubbles. This granules. Their sizes are small - 1000-2000 km, and the distance between them is 300-600 km. About a million granules can be observed simultaneously on the Sun, each of which exists for several minutes. The granules are surrounded by dark spaces. If the substance rises in the granules, then around them it falls. The granules create a general background against which large-scale formations such as faculae, sunspots, prominences, etc. can be observed.

Sunspots- dark areas on the Sun, the temperature of which is lower than the surrounding space.

Solar torches called bright fields surrounding sunspots.

Prominences(from lat. protubero- swell) - dense condensations of relatively cold (compared to the surrounding temperature) substance that rise and are held above the surface of the Sun by a magnetic field. The occurrence of the Sun's magnetic field can be caused by the fact that different layers of the Sun rotate at different speeds: the internal parts rotate faster; The core rotates especially quickly.

Prominences, sunspots and faculae are not the only examples of solar activity. It also includes magnetic storms and explosions, which are called flashes.

Above the photosphere is located chromosphere- the outer shell of the Sun. The origin of the name of this part of the solar atmosphere is associated with its reddish color. The thickness of the chromosphere is 10-15 thousand km, and the density of matter is hundreds of thousands of times less than in the photosphere. The temperature in the chromosphere is growing rapidly, reaching tens of thousands of degrees in its upper layers. At the edge of the chromosphere there are observed spicules, representing elongated columns of compacted luminous gas. The temperature of these jets is higher than the temperature of the photosphere. The spicules first rise from the lower chromosphere to 5000-10,000 km, and then fall back, where they fade. All this happens at a speed of about 20,000 m/s. Spi kula lives 5-10 minutes. The number of spicules existing on the Sun at the same time is about a million (Fig. 6).

Rice. 6. The structure of the outer layers of the Sun

Surrounds the chromosphere solar corona- outer layer of the Sun's atmosphere.

The total amount of energy emitted by the Sun is 3.86. 1026 W, and only one two-billionth of this energy is received by the Earth.

Solar radiation includes corpuscular And electromagnetic radiation.Corpuscular fundamental radiation- this is a plasma flow that consists of protons and neutrons, or in other words - sunny wind, which reaches near-Earth space and flows around the entire magnetosphere of the Earth. Electromagnetic radiation- This is the radiant energy of the Sun. It reaches the earth's surface in the form of direct and diffuse radiation and provides the thermal regime on our planet.

In the middle of the 19th century. Swiss astronomer Rudolf Wolf(1816-1893) (Fig. 7) calculated a quantitative indicator of solar activity, known throughout the world as the Wolf number. Having processed the observations of sunspots accumulated by the middle of the last century, Wolf was able to establish the average I-year cycle of solar activity. In fact, the time intervals between years of maximum or minimum Wolf numbers range from 7 to 17 years. Simultaneously with the 11-year cycle, a secular, or more precisely 80-90-year, cycle of solar activity occurs. Uncoordinatedly superimposed on each other, they make noticeable changes in the processes taking place in the geographical shell of the Earth.

The close connection of many terrestrial phenomena with solar activity was pointed out back in 1936 by A.L. Chizhevsky (1897-1964) (Fig. 8), who wrote that the overwhelming majority of physical and chemical processes on Earth are the result of the influence of cosmic forces. He was also one of the founders of such science as heliobiology(from Greek helios- sun), studying the influence of the Sun on the living matter of the geographical envelope of the Earth.

Depending on solar activity, such physical phenomena occur on Earth as: magnetic storms, the frequency of auroras, the amount of ultraviolet radiation, the intensity of thunderstorm activity, air temperature, atmospheric pressure, precipitation, the level of lakes, rivers, groundwater, salinity and activity of the seas and etc.

The life of plants and animals is associated with the periodic activity of the Sun (there is a correlation between solar cyclicity and the duration of the growing season in plants, the reproduction and migration of birds, rodents, etc.), as well as humans (diseases).

Currently, the relationships between solar and terrestrial processes continue to be studied using artificial Earth satellites.

Terrestrial planets

In addition to the Sun, planets are distinguished as part of the Solar System (Fig. 9).

Based on size, geographic characteristics and chemical composition, planets are divided into two groups: terrestrial planets And giant planets. The terrestrial planets include, and. They will be discussed in this subsection.

Rice. 9. Planets of the Solar System

Earth- the third planet from the Sun. A separate subsection will be devoted to it.

Let's summarize. The density of the planet’s substance, and taking into account its size, its mass, depends on the location of the planet in the solar system. How
The closer a planet is to the Sun, the higher its average density of matter. For example, for Mercury it is 5.42 g/cm\ Venus - 5.25, Earth - 5.25, Mars - 3.97 g/cm3.

The general characteristics of the terrestrial planets (Mercury, Venus, Earth, Mars) are primarily: 1) relatively small sizes; 2) high temperatures on the surface and 3) high density of planetary matter. These planets rotate relatively slowly on their axis and have few or no satellites. In the structure of the terrestrial planets, there are four main shells: 1) a dense core; 2) the mantle covering it; 3) bark; 4) light gas-water shell (excluding Mercury). Traces of tectonic activity were found on the surface of these planets.

Giant planets

Now let's get acquainted with the giant planets, which are also part of our solar system. This , .

Giant planets have the following general characteristics: 1) large size and mass; 2) rotate quickly around an axis; 3) have rings and many satellites; 4) the atmosphere consists mainly of hydrogen and helium; 5) in the center they have a hot core of metals and silicates.

They are also distinguished by: 1) low surface temperatures; 2) low density of planetary matter.

Space has long attracted people's attention. Astronomers began studying the planets of the Solar System back in the Middle Ages, examining them through primitive telescopes. But a thorough classification and description of the structural features and movements of celestial bodies became possible only in the 20th century. With the advent of powerful equipment, state-of-the-art observatories and spacecraft, several previously unknown objects were discovered. Now every schoolchild can list all the planets of the solar system in order. A space probe has landed on almost all of them, and so far man has only visited the Moon.

What is the Solar System

The Universe is huge and includes many galaxies. Our Solar System is part of a galaxy containing more than 100 billion stars. But there are very few that are like the Sun. Basically, they are all red dwarfs, which are smaller in size and do not shine as brightly. Scientists have suggested that the solar system was formed after the emergence of the Sun. Its huge field of attraction captured a gas-dust cloud, from which, as a result of gradual cooling, particles of solid matter formed. Over time, celestial bodies were formed from them. It is believed that the Sun is now in the middle of its life path, so it, as well as all the celestial bodies dependent on it, will exist for several more billions of years. Near space has been studied by astronomers for a long time, and any person knows what planets of the solar system exist. Photos of them taken from space satellites can be found on the pages of various information resources devoted to this topic. All celestial bodies are held by the strong gravitational field of the Sun, which makes up more than 99% of the volume of the Solar System. Large celestial bodies rotate around the star and around its axis in one direction and in one plane, which is called the ecliptic plane.

Planets of the Solar System in order

In modern astronomy, it is customary to consider celestial bodies starting from the Sun. In the 20th century, a classification was created that includes 9 planets of the solar system. But recent space exploration and new discoveries have pushed scientists to revise many provisions in astronomy. And in 2006, at an international congress, due to its small size (a dwarf with a diameter not exceeding three thousand km), Pluto was excluded from the number of classical planets, and there were eight of them left. Now the structure of our solar system has taken on a symmetrical, slender appearance. It includes the four terrestrial planets: Mercury, Venus, Earth and Mars, then comes the asteroid belt, followed by the four giant planets: Jupiter, Saturn, Uranus and Neptune. On the outskirts of the solar system there is also a space that scientists call the Kuiper Belt. This is where Pluto is located. These places are still little studied due to their remoteness from the Sun.

Features of the terrestrial planets

What allows us to classify these celestial bodies as one group? Let us list the main characteristics of the inner planets:

  • relatively small size;
  • hard surface, high density and similar composition (oxygen, silicon, aluminum, iron, magnesium and other heavy elements);
  • presence of atmosphere;
  • identical structure: a core of iron with nickel impurities, a mantle consisting of silicates, and a crust of silicate rocks (except for Mercury - it has no crust);
  • a small number of satellites - only 3 for four planets;
  • rather weak magnetic field.

Features of the giant planets

As for the outer planets, or gas giants, they have the following similar characteristics:

  • large sizes and weights;
  • they do not have a solid surface and consist of gases, mainly helium and hydrogen (therefore they are also called gas giants);
  • liquid core consisting of metallic hydrogen;
  • high rotation speed;
  • a strong magnetic field, which explains the unusual nature of many processes occurring on them;
  • there are 98 satellites in this group, most of which belong to Jupiter;
  • The most characteristic feature of gas giants is the presence of rings. All four planets have them, although they are not always noticeable.

The first planet is Mercury

It is located closest to the Sun. Therefore, from its surface the star appears three times larger than from the Earth. This also explains the strong temperature changes: from -180 to +430 degrees. Mercury moves very quickly in its orbit. Maybe that’s why it got such a name, because in Greek mythology Mercury is the messenger of the gods. There is practically no atmosphere here and the sky is always black, but the Sun shines very brightly. However, there are places at the poles where its rays never hit. This phenomenon can be explained by the tilt of the rotation axis. No water was found on the surface. This circumstance, as well as the abnormally high daytime temperature (as well as the low nighttime temperature) fully explain the fact of the absence of life on the planet.

Venus

If you study the planets of the solar system in order, then Venus comes second. People could observe it in the sky back in ancient times, but since it was shown only in the morning and evening, it was believed that these were 2 different objects. By the way, our Slavic ancestors called it Mertsana. It is the third brightest object in our solar system. Previously, people called it the morning and evening star, because it is best visible before sunrise and sunset. Venus and Earth are very similar in structure, composition, size and gravity. This planet moves very slowly around its axis, making a full revolution in 243.02 Earth days. Of course, conditions on Venus are very different from those on Earth. It is twice as close to the Sun, so it is very hot there. The high temperature is also explained by the fact that thick clouds of sulfuric acid and an atmosphere of carbon dioxide create a greenhouse effect on the planet. In addition, the pressure at the surface is 95 times greater than on Earth. Therefore, the first ship that visited Venus in the 70s of the 20th century stayed there for no more than an hour. Another peculiarity of the planet is that it rotates in the opposite direction compared to most planets. Astronomers still know nothing more about this celestial object.

Third planet from the Sun

The only place in the Solar System, and indeed in the entire Universe known to astronomers, where life exists is Earth. In the terrestrial group it has the largest size. What else are her

  1. The highest gravity among the terrestrial planets.
  2. Very strong magnetic field.
  3. High density.
  4. It is the only one among all the planets that has a hydrosphere, which contributed to the formation of life.
  5. It has the largest satellite compared to its size, which stabilizes its tilt relative to the Sun and influences natural processes.

The planet Mars

This is one of the smallest planets in our Galaxy. If we consider the planets of the solar system in order, then Mars is the fourth from the Sun. Its atmosphere is very rarefied, and the pressure on the surface is almost 200 times less than on Earth. For the same reason, very strong temperature changes are observed. The planet Mars has been little studied, although it has long attracted the attention of people. According to scientists, this is the only celestial body on which life could exist. After all, in the past there was water on the surface of the planet. This conclusion can be drawn from the fact that there are large ice caps at the poles, and the surface is covered with many grooves, which could be dried up river beds. In addition, there are some minerals on Mars that can only be formed in the presence of water. Another feature of the fourth planet is the presence of two satellites. What makes them unusual is that Phobos gradually slows down its rotation and approaches the planet, while Deimos, on the contrary, moves away.

What is Jupiter famous for?

The fifth planet is the largest. The volume of Jupiter would fit 1300 Earths, and its mass is 317 times that of Earth. Like all gas giants, its structure is hydrogen-helium, reminiscent of the composition of stars. Jupiter is the most interesting planet, which has many characteristic features:

  • it is the third brightest celestial body after the Moon and Venus;
  • Jupiter has the strongest magnetic field of any planet;
  • it completes a full revolution around its axis in just 10 Earth hours - faster than other planets;
  • An interesting feature of Jupiter is the large red spot - this is how an atmospheric vortex rotating counterclockwise is visible from Earth;
  • like all giant planets, it has rings, although not as bright as Saturn’s;
  • this planet has the largest number of satellites. He has 63 of them. The most famous are Europa, where water was found, Ganymede - the largest satellite of the planet Jupiter, as well as Io and Calisto;
  • Another feature of the planet is that in the shadow the surface temperature is higher than in places illuminated by the Sun.

Planet Saturn

It is the second largest gas giant, also named after the ancient god. It is composed of hydrogen and helium, but traces of methane, ammonia and water have been found on its surface. Scientists have found that Saturn is the rarest planet. Its density is less than that of water. This gas giant rotates very quickly - it makes one revolution in 10 Earth hours, as a result of which the planet is flattened from the sides. Huge speeds on Saturn and the wind - up to 2000 kilometers per hour. This is faster than the speed of sound. Saturn has another distinctive feature - it holds 60 satellites in its field of gravity. The largest of them, Titan, is the second largest in the entire solar system. The uniqueness of this object lies in the fact that by examining its surface, scientists for the first time discovered a celestial body with conditions similar to those that existed on Earth about 4 billion years ago. But the most important feature of Saturn is the presence of bright rings. They circle the planet around the equator and reflect more light than the planet itself. Four is the most amazing phenomenon in the solar system. What's unusual is that the inner rings move faster than the outer rings.

- Uranus

So, we continue to consider the planets of the solar system in order. The seventh planet from the Sun is Uranus. It is the coldest of all - the temperature drops to -224 °C. In addition, scientists did not find metallic hydrogen in its composition, but found modified ice. Therefore, Uranus is classified as a separate category of ice giants. An amazing feature of this celestial body is that it rotates while lying on its side. The change of seasons on the planet is also unusual: for as many as 42 Earth years, winter reigns there, and the Sun does not appear at all; summer also lasts 42 years, and the Sun does not set during this time. In spring and autumn, the star appears every 9 hours. Like all giant planets, Uranus has rings and many satellites. As many as 13 rings revolve around it, but they are not as bright as those of Saturn, and the planet contains only 27 satellites. If we compare Uranus with the Earth, then it is 4 times larger than it, 14 times heavier and is located at a distance from the Sun of 19 times the path to the star from our planet.

Neptune: the invisible planet

After Pluto was excluded from the number of planets, Neptune became the last from the Sun in the system. It is located 30 times further from the star than the Earth, and is not visible from our planet even with a telescope. Scientists discovered it, so to speak, by accident: observing the peculiarities of the movement of the planets closest to it and their satellites, they concluded that there must be another large celestial body beyond the orbit of Uranus. After discovery and research, interesting features of this planet were revealed:

  • due to the presence of a large amount of methane in the atmosphere, the color of the planet from space appears blue-green;
  • Neptune's orbit is almost perfectly circular;
  • the planet rotates very slowly - it makes one circle every 165 years;
  • Neptune is 4 times larger than Earth and 17 times heavier, but the force of gravity is almost the same as on our planet;
  • the largest of the 13 satellites of this giant is Triton. It is always turned to the planet with one side and slowly approaches it. Based on these signs, scientists suggested that it was captured by the gravity of Neptune.

There are about one hundred billion planets in the entire Milky Way galaxy. So far, scientists cannot study even some of them. But the number of planets in the solar system is known to almost all people on Earth. True, in the 21st century, interest in astronomy has faded a little, but even children know the names of the planets of the solar system.

The closest planet to the Sun and the smallest planet in the system, only 0.055% of the size of Earth. 80% of its mass is the core. The surface is rocky, cut with craters and funnels. The atmosphere is very rarefied and consists of carbon dioxide. The temperature on the sunny side is +500°C, on the reverse side -120°C. There is no gravitational or magnetic field on Mercury.

Venus

Venus has a very dense atmosphere made of carbon dioxide. The surface temperature reaches 450°C, which is explained by the constant greenhouse effect, the pressure is about 90 Atm. The size of Venus is 0.815 the size of Earth. The planet's core is made of iron. There is a small amount of water on the surface, as well as many methane seas. Venus has no satellites.

Planet Earth

The only planet in the Universe on which life exists. Almost 70% of the surface is covered with water. The atmosphere consists of a complex mixture of oxygen, nitrogen, carbon dioxide and inert gases. The planet's gravity is ideal. If it were smaller, oxygen would be in, if larger, hydrogen would accumulate on the surface, and life could not exist.

If you increase the distance from the Earth to the Sun by 1%, the oceans will freeze; if you decrease it by 5%, they will boil.

Mars

Due to the high content of iron oxide in the soil, Mars has a bright red color. Its size is 10 times smaller than that of Earth. The atmosphere consists of carbon dioxide. The surface is covered with craters and extinct volcanoes, the highest of which is Mount Olympus, its height is 21.2 km.

Jupiter

The largest of the planets in the solar system. 318 times larger than Earth. Consists of a mixture of helium and hydrogen. The interior of Jupiter is hot, and therefore vortex structures predominate in its atmosphere. Has 65 known satellites.

Saturn

The structure of the planet is similar to Jupiter, but above all, Saturn is known for its ring system. Saturn is 95 times larger than Earth, but its density is the lowest in the solar system. Its density is equal to the density of water. Has 62 known satellites.

Uranus

Uranus is 14 times larger than Earth. Unique for its sideways rotation. The inclination of its rotation axis is 98°. The core of Uranus is very cold because it releases all its heat into space. Has 27 satellites.

Neptune

17 times larger than Earth. Emits a large amount of heat. It exhibits low geological activity; on its surface there are geysers from. Has 13 satellites. The planet is accompanied by the so-called “Neptune Trojans,” which are bodies of an asteroid nature.

Neptune's atmosphere contains large amounts of methane, which gives it its characteristic blue color.

Features of the planets of the solar system

A distinctive feature of the planets of the solar system is the fact that they rotate not only around the Sun, but also along their own axis. Also, all planets are, to a greater or lesser extent, warm celestial bodies.

 


Read:



Dance with a woman in a dream

Dance with a woman in a dream

according to Loff's dream book Dancing gives a person powerful psychological and spiritual release. In many primitive cultures, dance is considered sacred...

Why dream of dancing with a guy

Why dream of dancing with a guy

Dream Interpretation of the 21st Century Dancing in a dream means what the dreamer dreams about Dancing means that flexibility will help you in business, waltzing means living in the moment,...

Death tarot meaning in relationships

Death tarot meaning in relationships

Basic meanings Positive: transformation. Negative: limitation. Key words: threshold, sudden or unexpected change,...

Knight of Wands: meaning (Tarot)

Knight of Wands: meaning (Tarot)

Knight of the Staff - Minor Arcana According to astrology, the Knight of the Staff corresponds to the planet Mars with its passion. The planet resides in Aries - in fact...

feed-image RSS