itthon - Világítás
Komplex differenciálás. Komplex funkció

Mióta idejöttél, valószínűleg már láttad ezt a képletet a tankönyvben

és csinálj egy ilyen arcot:

Barátom, ne aggódj! Valójában minden egyszerűen felháborító. Biztosan mindent meg fogsz érteni. Csak egy kérés - olvassa el a cikket lassan, próbáljon megérteni minden lépést. A lehető legegyszerűbben és érthetőbben írtam, de még mindig meg kell értened az ötletet. És mindenképpen oldja meg a feladatokat a cikkből.

Mi az összetett függvény?

Képzelje el, hogy egy másik lakásba költözik, és ezért nagy dobozokba csomagolja a dolgokat. Tegyük fel, hogy össze kell gyűjtenünk néhányat apró tárgyakat például iskolai íróanyagok. Ha csak bedobod őket egy hatalmas dobozba, akkor többek között elvesznek. Ennek elkerülése érdekében először tedd például egy zacskóba, amit aztán egy nagy dobozba teszel, utána lezárod. Ezt az „összetett” folyamatot az alábbi diagram mutatja be:

Úgy tűnik, mi köze ehhez a matematikának? Igen, annak ellenére, hogy egy komplex függvény PONTOSAN UGYANÉBEN jön létre! Csak mi nem füzeteket és tollakat „pakolunk”, hanem \(x\), míg a „csomagok” és a „dobozok” különböznek.

Például vegyük x-et és „csomagoljuk” egy függvénybe:


Ennek eredményeként természetesen a \(\cos⁡x\) értéket kapjuk. Ez a mi „táskánk”. Most tegyük egy „dobozba” - csomagoljuk például egy kockafüggvénybe.


Mi lesz a végén? Igen, ez így van, lesz egy „zsák holmi egy dobozban”, azaz „X koszinusz kockában”.

Az így létrejövő tervezés összetett funkció. Abban különbözik az egyszerűtől TÖBB „befolyást” (csomagot) alkalmazunk egy X-re egymás utánés kiderül, mintha „funkció a funkcióból” – „csomagolás a csomagoláson belül”.

Az iskolai tanfolyamon ezeknek a „csomagoknak” nagyon kevés típusa van, mindössze négy:

Most „csomagoljuk” X-et először egy 7-es bázisú exponenciális függvénybe, majd egy trigonometrikus függvénybe. Kapunk:

\(x → 7^x → tg⁡(7^x)\)

Most „csomagoljuk” x-et kétszer trigonometrikus függvényekbe, először be, majd be:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

Egyszerű, igaz?

Most írd be magad a függvényeket, ahol x:
- először koszinuszba, majd \(3\) bázisú exponenciális függvénybe „csomagoljuk”;
- először az ötödik hatványra, majd az érintőre;
- először a logaritmushoz \(4\) bázishoz , majd a \(-2\) hatványra.

Erre a feladatra a cikk végén találja meg a választ.

Nem kétszer, hanem háromszor „pakolhatjuk” X-et? Nincs mit! És négyszer, ötször és huszonötször. Itt van például egy függvény, amelyben az x \(4\)-szer „be van csomagolva”:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

De az iskolai gyakorlatban nem lesz ilyen képlet (a tanulók szerencsésebbek, az övék lehet bonyolultabb☺).

Egy összetett funkció "kicsomagolása".

Nézd meg újra az előző függvényt. Ki tudod találni a „csomagolási” sorrendet? Mibe tömték bele először X-et, mibe aztán, és így tovább a legvégéig. Vagyis melyik függvény melyikbe van beágyazva? Vegyünk egy darab papírt, és írjuk le, mit gondolunk. Ezt megteheti nyilakkal ellátott lánccal, ahogy fent írtuk, vagy bármilyen más módon.

Most a helyes válasz: először x-et „pakoltunk” a \(4\)-edik hatványba, majd az eredményt egy szinuszba, azt viszont a logaritmusba a \(2\) bázisba. , és végül ezt az egész konstrukciót egy hatványötösbe tömték.

Vagyis a szekvenciát FORDÍTOTT SORBAN kell letekernie. És itt van egy tipp, hogyan csináld könnyebben: azonnal nézd meg az X-et – táncolni kell belőle. Nézzünk néhány példát.

Például itt van a következő függvény: \(y=tg⁡(\log_2⁡x)\). Nézzük az X-et – mi történik vele először? Elvették tőle. És akkor? Az eredmény tangensét veszik. A sorrend ugyanaz lesz:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Egy másik példa: \(y=\cos⁡((x^3))\). Elemezzük – először X-et kockáztunk, majd vettük az eredmény koszinuszát. Ez azt jelenti, hogy a sorozat a következő lesz: \(x → x^3 → \cos⁡((x^3))\). Figyelem, a funkció hasonlónak tűnik a legelsőhöz (ahol képek vannak). De ez egy teljesen más függvény: itt van a kockában x (vagyis \(\cos⁡((x·x·x)))\), és ott van a kockában a koszinusz \(x\) ( azaz \(\cos⁡ x·\cos⁡x·\cos⁡x\)). Ez a különbség a különböző „csomagolási” szekvenciákból adódik.

Az utolsó példa (fontos információval benne): \(y=\sin⁡((2x+5))\). Jól látható, hogy itt először aritmetikai műveleteket végeztek x-szel, majd vették az eredmény szinuszát: \(x → 2x+5 → \sin⁡((2x+5))\). És ez fontos pont: annak ellenére, hogy az aritmetikai műveletek önmagukban nem függvények, itt egyúttal „csomagolásként” is működnek. Vegyünk egy kicsit mélyebbre ebbe a finomságba.

Ahogy fentebb mondtam, az egyszerű függvényekben x egyszer „csomagolva”, összetett függvényekben pedig kettő vagy több. Ezenkívül egyszerű függvények bármilyen kombinációja (azaz összegük, különbségük, szorzásuk vagy osztásuk) szintén egyszerű függvény. Például az \(x^7\) egy egyszerű függvény, és a \(ctg x\) is az. Ez azt jelenti, hogy minden kombinációjuk egyszerű függvény:

\(x^7+ ctg x\) - egyszerű,
\(x^7· kiságy x\) – egyszerű,
\(\frac(x^7)(ctg x)\) – egyszerű stb.

Ha azonban egy ilyen kombinációra még egy függvényt alkalmazunk, az összetett függvény lesz, mivel két „csomag” lesz. Lásd a diagramot:



Oké, menj tovább. Írja fel a „csomagolás” függvények sorrendjét:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
A válaszok ismét a cikk végén találhatóak.

Belső és külső funkciók

Miért kell megértenünk a függvénybeágyazódást? Mit ad ez nekünk? A helyzet az, hogy ilyen elemzés nélkül nem tudjuk megbízhatóan megtalálni a fent tárgyalt függvények származékait.

A továbblépéshez pedig még két fogalomra lesz szükségünk: belső és külső funkciókra. Ez nagyon egyszerű dolog, sőt, tulajdonképpen fentebb már elemeztük őket: ha a legelején emlékezünk a hasonlatunkra, akkor a belső funkció egy „csomag”, a külső funkció pedig egy „doboz”. Azok. amibe X először „be van csomagolva”, az belső függvény, és amibe a belső függvény „be van csomagolva”, az már külső. Nos, világos, hogy miért - kívül van, ez azt jelenti, hogy külső.

Ebben a példában: \(y=tg⁡(log_2⁡x)\), a \(\log_2⁡x\) függvény belső, és
- külső.

És ebben: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) belső, és
- külső.

Végezzük el az összetett függvények elemzésének utolsó gyakorlatát, és menjünk végre arra, amiért mindannyian elkezdtük – megtaláljuk az összetett függvények származékait:

Töltse ki a táblázat üres helyeit:


Komplex függvény származéka

Bravó nekünk, végre eljutottunk ennek a témának a „főnökéhez” – tulajdonképpen egy összetett függvény származékához, és konkrétan ahhoz a nagyon szörnyű képlethez a cikk elején.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Ez a képlet így hangzik:

Egy komplex függvény deriváltja egyenlő a külső függvény egy állandó belső függvényre vonatkozó deriváltjának és a belső függvény deriváltjának szorzatával.

És azonnal nézze meg a „szóról szóra” elemzési diagramot, hogy megértse, mi az:

Remélem, a „származék” és a „termék” kifejezések nem okoznak nehézséget. „Összetett funkció” – már kiválogattuk. A fogás a „külső függvény származékában van egy állandó belső függvényhez képest”. Ami?

Válasz: Ez egy külső függvény szokásos deriváltja, amelyben csak a külső függvény változik, a belső pedig ugyanaz marad. Még mindig nem világos? Oké, használjunk egy példát.

Legyen egy \(y=\sin⁡(x^3)\) függvény. Nyilvánvaló, hogy a belső függvény itt \(x^3\), és a külső
. Most keressük meg a külső származékát az állandó belső vonatkozásában.

Ha követi a definíciót, akkor egy függvény deriváltja egy pontban a Δ függvény növekményének a határa. y a Δ argumentumnövekményhez x:

Úgy tűnik, minden világos. De próbálja meg ezzel a képlettel kiszámítani, mondjuk, a függvény deriváltját f(x) = x 2 + (2x+ 3) · e x bűn x. Ha mindent definíció szerint csinálsz, akkor néhány oldalas számítás után egyszerűen elalszol. Ezért vannak egyszerűbb és hatékonyabb módszerek.

Először is megjegyezzük, hogy a függvények teljes választékából megkülönböztethetjük az úgynevezett elemi függvényeket. Viszonylag egyszerű kifejezésekről van szó, amelyek származékait régóta kiszámolták és bevitték a táblázatba. Az ilyen függvényeket nagyon könnyű megjegyezni – származékaikkal együtt.

Elemi függvények származékai

Az elemi függvények az alábbiakban felsoroltak. Ezeknek a függvényeknek a származékait fejből kell tudni. Sőt, egyáltalán nem nehéz megjegyezni őket - ezért elemiek.

Tehát az elemi függvények származékai:

A matematikai fizikai feladatok vagy példák megoldása teljesen lehetetlen a derivált és a számítási módszerek ismerete nélkül. A derivált a matematikai elemzés egyik legfontosabb fogalma. Úgy döntöttünk, hogy a mai cikket ennek az alapvető témának szenteljük. Mi a derivált, mi a fizikai és geometriai jelentése, hogyan kell kiszámítani egy függvény deriváltját? Mindezek a kérdések összevonhatók egybe: hogyan lehet megérteni a származékot?

A származék geometriai és fizikai jelentése

Legyen függvény f(x) , meghatározott intervallumban (a, b) . Az x és x0 pont ehhez az intervallumhoz tartozik. Ha x változik, maga a függvény is megváltozik. Az érv megváltoztatása - az értékek különbsége x-x0 . Ez a különbség így van írva delta x és argumentumnövekménynek nevezzük. Egy függvény változása vagy növekménye a függvény értékeinek különbsége két ponton. A származék definíciója:

Egy függvény deriváltja egy pontban a függvény adott pontban történő növekménye és az argumentum növekménye arányának határa, amikor az utóbbi nullára hajlik.

Egyébként így írható:

Mi értelme ilyen határt találni? És íme, mi ez:

egy függvény deriváltja egy pontban egyenlő az OX tengely és a függvény grafikonjának érintője közötti szög érintőjével egy adott pontban.


A származék fizikai jelentése: az út időbeli deriváltja egyenlő az egyenes vonalú mozgás sebességével.

Valójában az iskolai idők óta mindenki tudja, hogy a sebesség egy adott út x=f(t) és az idő t . Átlagsebesség egy bizonyos időszak alatt:

Megtudni a mozgás sebességét egy adott pillanatban t0 ki kell számolni a határértéket:

Első szabály: állítson be egy állandót

A konstans kivehető a derivált előjelből. Ráadásul ezt meg is kell tenni. A matematika példáinak megoldása során vegye ezt szabálynak - Ha le tud egyszerűsíteni egy kifejezést, mindenképpen egyszerűsítse .

Példa. Számítsuk ki a deriváltot:

Második szabály: a függvények összegének deriváltja

Két függvény összegének deriváltja egyenlő ezen függvények deriváltjainak összegével. Ugyanez igaz a függvények különbségének deriváltjára is.

Nem bizonyítjuk ezt a tételt, inkább egy gyakorlati példát veszünk figyelembe.

Keresse meg a függvény deriváltját:

Harmadik szabály: a függvények szorzatának deriváltja

Két differenciálható függvény szorzatának deriváltja a következő képlettel számítható ki:

Példa: keresse meg egy függvény deriváltját:

Megoldás:

Itt fontos szót ejteni az összetett függvények deriváltjainak kiszámításáról. Egy komplex függvény deriváltja egyenlő ennek a függvénynek a deriváltjának a szorzatával a köztes argumentum és a köztes argumentum deriváltjának a független változó tekintetében.

A fenti példában a következő kifejezéssel találkozunk:

Ebben az esetben a köztes argumentum az ötödik hatvány nyolcszorosa. Egy ilyen kifejezés deriváltjának kiszámításához először kiszámítjuk a külső függvény deriváltját a köztes argumentumhoz képest, majd megszorozzuk magának a köztes argumentumnak a független változóhoz viszonyított deriváltjával.

Negyedik szabály: két függvény hányadosának deriváltja

Képlet két függvény hányadosának deriváltjának meghatározására:

Megpróbáltunk a nulláról beszélni a próbababák származékairól. Ez a téma nem olyan egyszerű, mint amilyennek látszik, ezért figyelem: a példákban gyakran vannak buktatók, ezért legyen óvatos a származékok kiszámításakor.

Ezzel és más témával kapcsolatos kérdéseivel fordulhat a diákszolgálathoz. Rövid időn belül segítünk megoldani a legnehezebb tesztet és megérteni a feladatokat, még akkor is, ha még soha nem végzett derivált számításokat.

És a tétel egy komplex függvény deriváltjáról, amelynek megfogalmazása a következő:

Legyen 1) az $u=\varphi (x)$ függvénynek valamikor $x_0$ a $u_(x)"=\varphi"(x_0)$ deriváltja, 2) a $y=f(u)$ függvény legyen a megfelelő $u_0=\varphi (x_0)$ pontban a $y_(u)"=f"(u)$ derivált. Ekkor az említett pontban található $y=f\left(\varphi (x) \right)$ komplex függvénynek is lesz deriváltja, amely megegyezik a $f(u)$ és $\varphi () függvények deriváltjainak szorzatával x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

vagy rövidebb jelöléssel: $y_(x)"=y_(u)"\cdot u_(x)"$.

Az ebben a szakaszban szereplő példákban minden függvény alakja $y=f(x)$ (azaz csak egy $x$ változó függvényeit vesszük figyelembe). Ennek megfelelően minden példában a $y"$ derivált a $x$ változóra vonatkozik. Annak hangsúlyozására, hogy a derivált a $x$ változóra vonatkozik, gyakran $y"_x$ íródik $y helyett. "$.

Az 1., 2. és 3. példák vázolják az összetett függvények deriváltjának megtalálásának részletes folyamatát. A 4. példa a származéktáblázat teljesebb megértését szolgálja, és érdemes megismerkedni vele.

Célszerű az 1-3. számú példák anyagának tanulmányozása után áttérni az 5., 6. és 7. példák önálló megoldására. Az 5., 6. és 7. példák egy rövid megoldást tartalmaznak, hogy az olvasó ellenőrizhesse az eredmény helyességét.

1. példa

Keresse meg a $y=e^(\cos x)$ függvény deriváltját.

Meg kell találnunk egy $y"$ komplex függvény deriváltját. Mivel $y=e^(\cos x)$, akkor $y"=\left(e^(\cos x)\right)"$. keressük meg a $ \left(e^(\cos x)\right)"$ deriváltot a deriválttáblázat 6-os képletét használjuk. A 6-os képlet használatához figyelembe kell vennünk, hogy esetünkben $u=\cos x$. A további megoldás abból áll, hogy a 6. képletbe egyszerűen behelyettesítjük a $\cos x$ kifejezést a $u$ helyett:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Most meg kell találnunk a $(\cos x)"$ kifejezés értékét. Ismét áttérünk a deriváltak táblázatára, kiválasztva a 10-es képletet. Ha az $u=x$-t behelyettesítjük a 10-es képletbe, azt kapjuk : $(\cos x)"=-\ sin x\cdot x"$ Most folytassuk az (1.1) egyenlőséget, kiegészítve a talált eredménnyel:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Mivel $x"=1$, folytatjuk az egyenlőséget (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Tehát az (1.3) egyenlőségből a következőt kapjuk: $y"=-\sin x\cdot e^(\cos x)$. Természetesen a magyarázatokat és a köztes egyenlőségeket általában kihagyjuk, a derivált megállapítását egy sorba írva, mint az ( 1.3) egyenlőségben, tehát a komplex függvény deriváltja megvan, már csak a választ kell felírni.

Válasz: $y"=-\sin x\cdot e^(\cos x)$.

2. példa

Keresse meg a $y=9\cdot \arctg^(12)(4\cdot \ln x)$ függvény deriváltját.

Ki kell számítanunk a $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$ deriváltot. Először is megjegyezzük, hogy a konstans (azaz a 9-es szám) kivehető a származékjelből:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Most térjünk rá a $\left(\arctg^(12)(4\cdot \ln x) \right)"$ kifejezésre. Hogy könnyebb legyen kiválasztani a kívánt képletet a származékok táblázatából, bemutatom a kifejezést ebben a formában: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Most már világos, hogy szükség van a 2. számú képlet használatára, azaz. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Helyettesítsük be a $u=\arctg(4\cdot \ln x)$ és $\alpha=12$ karakterláncot ebbe a képletbe:

A kapott eredménnyel a (2.1) egyenlőséget kiegészítve a következőt kapjuk:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

Ebben a helyzetben gyakran elkövetik a hibát, amikor a megoldó az első lépésben a $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ képletet választja a képlet helyett $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. A lényeg az, hogy a külső függvény deriváltja legyen az első. Annak megértéséhez, hogy melyik függvény lesz a $\arctg^(12)(4\cdot 5^x)$ kifejezésen kívül, képzelje el, hogy a $\arctg^(12)(4\cdot 5^) kifejezés értékét számítja ki. x)$ valamilyen $x$ értékben. Először kiszámolja az $5^x$ értékét, majd az eredményt megszorozza 4-gyel, így megkapja $4\cdot 5^x$. Most ebből az eredményből vesszük az arctangenst, és megkapjuk a $\arctg(4\cdot 5^x)$ értéket. Ezután a kapott számot a tizenkettedik hatványra emeljük, így $\arctg^(12)(4\cdot 5^x)$ lesz. Az utolsó akció, i.e. a 12-es hatványra emelés külső függvény lesz. És ebből kell elkezdenünk a derivált megtalálását, ami a (2.2) egyenlőségben megtörtént.

Most meg kell találnunk a $(\arctg(4\cdot \ln x))"$-t. A derivált táblázat 19. számú képletét használjuk, és behelyettesítjük a $u=4\cdot \ln x$ értékkel:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Egy kicsit egyszerűsítsük a kapott kifejezést, figyelembe véve a $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Az egyenlőség (2.2) mostantól a következő lesz:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Marad a $(4\cdot \ln x)"$. Vegyük ki a konstanst (azaz 4) a derivált jelből: $(4\cdot \ln x)"=4\cdot (\ln x)" $ A $(\ln x)"$ kereséséhez a 8-as képletet használjuk, amelybe behelyettesítjük az $u=x$-t: $(\ln x)"=\frac(1)(x)\cdot x. "$. Mivel $x"=1$, akkor $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x) $ A kapott eredményt a (2.3) képletbe behelyettesítve kapjuk:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).

Hadd emlékeztesselek arra, hogy egy komplex függvény deriváltja leggyakrabban egy sorban található, ahogy az utolsó egyenlőségben is szerepel. Ezért a standard számítások vagy az ellenőrzési munkák elkészítésekor egyáltalán nem szükséges ilyen részletesen ismertetni a megoldást.

Válasz: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

3. példa

Keresse meg a $y"$ $y=\sqrt(\sin^3(5\cdot9^x))$ függvényt.

Először kicsit alakítsuk át a $y$ függvényt, a gyököt (gyököt) hatványként kifejezve: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9) ^x) \jobbra)^(\frac(3)(7))$. Most kezdjük el megkeresni a származékot. Mivel $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, akkor:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Használjuk a származékok táblázatának 2. képletét, behelyettesítve a $u=\sin(5\cdot 9^x)$ és $\alpha=\frac(3)(7)$ karakterekkel:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Folytassuk a (3.1) egyenlőséget a kapott eredmény felhasználásával:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Most meg kell találnunk a $(\sin(5\cdot 9^x))"$-t. Ehhez a származéktáblázat 9-es képletét használjuk, és behelyettesítjük a $u=5\cdot 9^x$ értékkel:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

A kapott eredménnyel kiegészítve a (3.2) egyenlőséget, a következőt kapjuk:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Marad a következőt megkeresni: $(5\cdot 9^x)"$. Először is vegyük a konstanst (a $5$ számot) a derivált jelen kívülre, azaz $(5\cdot 9^x)"=5\cdot (9 ^x) "$. A $(9^x)"$ derivált megtalálásához alkalmazza a derivált táblázat 5. képletét, és cserélje be az $a=9$ és $u=x$ karakterláncot: $(9^x )"=9^x\cdot \ ln9\cdot x"$. Mivel $x"=1$, akkor $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Most folytathatjuk a (3.3) egyenlőséget:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

A hatványokról ismét visszatérhetünk a gyökökhöz (azaz a gyökökhöz), a $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ alakban $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\) cdot 9^x)))$. Ezután a származékot a következő formában írjuk le:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).

Válasz: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

4. számú példa

Mutassuk meg, hogy a származékok táblázatának 3. és 4. képlete a táblázat 2. képletének speciális esete.

A derivált táblázat 2. számú képlete tartalmazza az $u^\alpha$ függvény deriváltját. A $\alpha=-1$ behelyettesítésével a 2. képletbe a következőt kapjuk:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Mivel $u^(-1)=\frac(1)(u)$ és $u^(-2)=\frac(1)(u^2)$, ezért a (4.1) egyenlőség a következőképpen írható át: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Ez a származékok táblázatának 3. számú képlete.

Térjünk vissza a derivált táblázat 2. képletére. Helyettesítsük be a $\alpha=\frac(1)(2)$ karakterláncot:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Mivel $u^(\frac(1)(2))=\sqrt(u)$ és $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1) )(2)))=\frac(1)(\sqrt(u))$, akkor a (4.2) egyenlőség a következőképpen írható át:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

A kapott $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ egyenlőség a derivált táblázat 4. számú képlete. Mint látható, a derivált táblázat 3. és 4. képlete a 2. képletből származik a megfelelő $\alpha$ érték helyettesítésével.

Komplex származékok. Logaritmikus derivált.
Hatvány-exponenciális függvény deriváltja

Továbbra is fejlesztjük differenciálási technikánkat. Ebben a leckében összevonjuk az általunk tárgyalt anyagot, megnézzük az összetettebb deriváltokat, valamint megismerkedünk a derivált megtalálásának új technikáival és trükkjeivel, különösen a logaritmikus deriválttal.

Azok az olvasók, akik alacsony felkészültséggel rendelkeznek, olvassák el a cikket Hogyan lehet megtalálni a származékot? Példák megoldásokra, amely lehetővé teszi, hogy szinte a semmiből emelje tudását. Ezután alaposan tanulmányoznia kell az oldalt Komplex függvény származéka, megérteni és megoldani Minden az általam felhozott példákat. Ez a lecke logikusan a harmadik a sorban, és elsajátítása után magabiztosan megkülönbözteti a meglehetősen összetett funkciókat. Nem kívánatos a „Hol máshol? Elég volt!”, hiszen minden példa és megoldás valós tesztekből származik, és gyakran találkozunk vele a gyakorlatban.

Kezdjük az ismétléssel. A leckében Komplex függvény származéka Számos példát néztünk meg részletes megjegyzésekkel. A differenciálszámítás és a matematikai elemzés más ágainak tanulmányozása során nagyon gyakran kell differenciálni, és nem mindig kényelmes (és nem is mindig szükséges) a példák részletes leírása. Ezért szóban fogjuk gyakorolni a származékok megtalálását. Erre a legalkalmasabb „jelöltek” a legegyszerűbb összetett függvények származékai, például:

Az összetett függvények differenciálási szabálya szerint :

Amikor a jövőben más matan témákat tanul, legtöbbször nincs szükség ilyen részletes rögzítésre, feltételezzük, hogy a hallgató tudja, hogyan találhat ilyen származékokat autopilotán. Képzeljük el, hogy hajnali 3 órakor megszólalt a telefon, és egy kellemes hang megkérdezte: "Mi a deriváltja két X tangensének?" Ezt szinte azonnali és udvarias válasznak kell követnie: .

Az első példa azonnal a cél lesz önálló döntés.

1. példa

Keresse meg szóban, például egy műveletben a következő származékokat: . A feladat elvégzéséhez csak használnia kell elemi függvények deriváltjainak táblázata(ha még nem emlékeztél rá). Ha nehézségei vannak, javaslom, hogy olvassa el újra a leckét Komplex függvény származéka.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Válaszok a lecke végén

Komplex származékok

Előzetes tüzérségi előkészítés után a 3-4-5 funkciófészkelésű példák kevésbé lesznek ijesztőek. A következő két példa bonyolultnak tűnhet egyesek számára, de ha megérti őket (valaki szenvedni fog), akkor szinte minden más a differenciálszámításban gyerekviccnek tűnik.

2. példa

Keresse meg egy függvény deriváltját

Mint már említettük, egy komplex függvény deriváltjának megtalálásához először is szükség van rá JobbÉRTSE MEG befektetéseit. Azokban az esetekben, amikor kétségek merülnek fel, emlékeztetek egy hasznos technikára: vesszük például az „x” kísérleti értékét, és megpróbáljuk (mentálisan vagy vázlatosan) ezt az értéket behelyettesíteni a „szörnyű kifejezésbe”.

1) Először ki kell számítanunk a kifejezést, ami azt jelenti, hogy az összeg a legmélyebb beágyazás.

2) Ezután ki kell számítania a logaritmust:

4) Ezután felkockázzuk a koszinuszát:

5) Az ötödik lépésben a különbség a következő:

6) És végül a legtöbb külső funkció a négyzetgyök:

Egy összetett függvény megkülönböztetésének képlete fordított sorrendben alkalmazzák, a legkülső funkciótól a legbelsőig. Mi döntünk:

Úgy tűnik, nincs hiba...

(1) Vegyük a négyzetgyök deriváltját.

(2) A különbség deriváltját a szabály segítségével vesszük

(3) A hármas deriváltja nulla. A második tagban vesszük a fok (kocka) deriváltját.

(4) Vegyük a koszinusz deriváltját.

(5) Vegyük a logaritmus deriváltját.

(6) És végül vesszük a legmélyebb beágyazás származékát.

Lehet, hogy túl nehéznek tűnik, de nem ez a legbrutálisabb példa. Vegyük például Kuznyecov gyűjteményét, és értékelni fogja az elemzett származék minden szépségét és egyszerűségét. Észrevettem, hogy szeretnek hasonlót adni egy vizsgán, hogy ellenőrizzék, hogy a hallgató érti-e egy komplex függvény deriváltját, vagy nem érti.

A következő példa arra szolgál, hogy Ön egyedül oldja meg.

3. példa

Keresse meg egy függvény deriváltját

Tipp: Először a linearitási szabályokat és a termékdifferenciálási szabályokat alkalmazzuk

Teljes megoldás és válasz a lecke végén.

Ideje áttérni valami kisebbre és szebbre.
Nem ritka, hogy egy példa nem két, hanem három függvény szorzatát mutatja. Hogyan találjuk meg a három tényező szorzatának deriváltját?

4. példa

Keresse meg egy függvény deriváltját

Először is nézzük meg, hogy lehet-e három függvény szorzatát két függvény szorzatává alakítani? Például, ha két polinom van a szorzatban, kinyithatjuk a zárójeleket. De a vizsgált példában az összes függvény különbözik: fok, kitevő és logaritmus.

Ilyen esetekben szükséges szekvenciálisan alkalmazza a termékdifferenciálási szabályt kétszer

A trükk az, hogy „y”-vel két függvény szorzatát jelöljük: , „ve”-vel pedig a logaritmust: . Miért lehet ezt megtenni? Ez valóban – ez nem két tényező szorzata és a szabály nem működik?! Nincs semmi bonyolult:

Most már másodszor kell alkalmazni a szabályt zárójelbe:

Meg is csavarodhat, és zárójelbe tesz valamit, de ebben az esetben jobb, ha pontosan ebben a formában hagyja a választ - könnyebb lesz ellenőrizni.

A vizsgált példa a második módon is megoldható:

Mindkét megoldás teljesen egyenértékű.

5. példa

Keresse meg egy függvény deriváltját

Ez egy példa egy független megoldásra a mintában az első módszerrel van megoldva.

Nézzünk hasonló példákat a törtekkel.

6. példa

Keresse meg egy függvény deriváltját

Többféleképpen is eljuthatsz ide:

Vagy így:

De a megoldást tömörebben írjuk le, ha először a hányados differenciálási szabályát használjuk , figyelembe véve a teljes számlálót:

Elvileg a példa meg van oldva, és ha így marad, akkor nem lesz hiba. De ha van időd, mindig célszerű megnézni egy piszkozatot, hátha egyszerűsíthető a válasz? Csökkentsük a számláló kifejezését erre közös nevezőÉs szabaduljunk meg a háromemeletes törttől:

A további egyszerűsítések hátránya, hogy nem a származék megtalálásakor, hanem a banális iskolaátalakítások során fennáll a hiba veszélye. Másrészt a tanárok gyakran elutasítják a feladatot, és azt kérik, hogy „hozzuk eszünkbe” a származékot.

Egy egyszerűbb példa önálló megoldásra:

7. példa

Keresse meg egy függvény deriváltját

Továbbra is elsajátítjuk a derivált megtalálásának módszereit, és most egy tipikus esetet veszünk figyelembe, amikor egy „szörnyű” logaritmust javasolnak a differenciáláshoz

8. példa

Keresse meg egy függvény deriváltját

Itt hosszú utat tehet meg az összetett függvények megkülönböztetésének szabályával:

De a legelső lépés azonnal csüggedtségbe sodor – törthatványból kell venni a kellemetlen származékot, majd törtből is.

Ezért előtt hogyan vegyük le egy „kifinomult” logaritmus deriváltját, először egyszerűsítjük a jól ismert iskolai tulajdonságok segítségével:



! Ha van kéznél egy gyakorlófüzet, másolja közvetlenül oda ezeket a képleteket. Ha nincs jegyzetfüzete, másolja ki őket egy papírra, mivel a lecke többi példája ezen képletek körül fog járni.

Magát a megoldást így írhatjuk le:

Alakítsuk át a függvényt:

A származék megkeresése:

Maga a függvény előzetes konvertálása nagyban leegyszerűsítette a megoldást. Így ha hasonló logaritmust javasolnak a differenciáláshoz, mindig tanácsos „lebontani”.

És most néhány egyszerű példa, amelyet önállóan megoldhat:

9. példa

Keresse meg egy függvény deriváltját

10. példa

Keresse meg egy függvény deriváltját

Minden átalakítás és válasz a lecke végén található.

Logaritmikus derivált

Ha a logaritmusok származéka ilyen édes zene, akkor felmerül a kérdés: lehetséges-e bizonyos esetekben mesterségesen rendszerezni a logaritmust? Tud! És még szükséges is.

11. példa

Keresse meg egy függvény deriváltját

Nemrég néztünk hasonló példákat. Mit kell tenni? Alkalmazhatja egymás után a hányados differenciálási szabályát, majd a szorzat differenciálási szabályát. Ennek a módszernek az a hátránya, hogy a végén egy hatalmas háromemeletes törtet kapunk, amivel egyáltalán nem akarunk foglalkozni.

De elméletben és gyakorlatban van egy olyan csodálatos dolog, mint a logaritmikus derivált. A logaritmusokat mesterségesen is meg lehet szervezni, ha mindkét oldalra „akasztjuk” őket:

jegyzet : mert egy függvény negatív értékeket vehet fel, akkor általában modulokat kell használni: , amely a differenciálódás következtében eltűnik. Elfogadható azonban a jelenlegi kialakítás is, ahol alapból ezt veszik figyelembe összetett jelentések. De ha teljes szigorral, akkor mindkét esetben fenntartással kell élni, hogy.

Most a jobb oldal logaritmusát kell „szétszedni”, amennyire csak lehetséges (képletek a szemed előtt?). Ezt a folyamatot részletesen leírom:

Kezdjük a megkülönböztetéssel.
Mindkét részt a prime alatt zárjuk:

A jobb oldal származéka meglehetősen egyszerű, nem kommentálom, mert ha ezt a szöveget olvassa, akkor magabiztosan kell kezelnie.

Mi van a bal oldallal?

A bal oldalon van összetett funkció. Előre látom a kérdést: „Miért van egy „Y” betű a logaritmus alatt?

A tény az, hogy ez az „egy betűs játék” - ÖNMAGA FUNKCIÓ(ha nem túl világos, nézze meg az implicit módon megadott függvény származéka című cikket). Ezért a logaritmus egy külső függvény, az „y” pedig egy belső függvény. És a szabályt egy összetett függvény megkülönböztetésére használjuk :

A bal oldalon, mintha varázsütésre, van egy származékunk. Ezután az arányszabály szerint átvisszük az „y”-t a bal oldali nevezőből a jobb oldal tetejére:

És most emlékezzünk, milyen „játékos” funkcióról beszéltünk a megkülönböztetés során? Nézzük a feltételt:

Végső válasz:

12. példa

Keresse meg egy függvény deriváltját

Ez egy példa arra, hogy egyedül oldja meg. A lecke végén egy ilyen típusú minta minta látható.

A logaritmikus derivált segítségével a 4-7. példák bármelyikét meg lehetett oldani, másik dolog, hogy ott egyszerűbbek a függvények, és talán nem nagyon indokolt a logaritmikus derivált használata.

Hatvány-exponenciális függvény deriváltja

Ezt a funkciót még nem vettük figyelembe. A hatvány-exponenciális függvény olyan függvény, amelyre mind a fok, mind az alap az „x”-től függ. Egy klasszikus példa, amelyet bármelyik tankönyvben vagy előadásban megadnak:

Hogyan találjuk meg a hatvány-exponenciális függvény deriváltját?

Az imént tárgyalt technikát kell használni - a logaritmikus deriváltot. Mindkét oldalra logaritmusokat akasztunk:

Általában a jobb oldalon a fokszám kikerül a logaritmus alól:

Ennek eredményeként a jobb oldalon két függvény szorzata látható, amelyeket a szabványos képlet szerint különböztetünk meg. .

Ehhez megtaláljuk a származékot, mindkét részt vonjuk be:

A további műveletek egyszerűek:

Végül:

Ha bármely átalakítás nem teljesen egyértelmű, kérjük, olvassa el újra figyelmesen a 11. példa magyarázatait.

A gyakorlati feladatokban a hatvány-exponenciális függvény mindig bonyolultabb lesz, mint a vizsgált előadási példa.

13. példa

Keresse meg egy függvény deriváltját

A logaritmikus deriváltot használjuk.

A jobb oldalon van egy konstans és két tényező szorzata - „x” és „x logaritmus” (a logaritmus alá egy másik logaritmus van beágyazva). A differenciálásnál, mint emlékszünk, jobb, ha a konstanst azonnal kimozdítjuk a származékjelből, hogy ne álljon útban; és természetesen alkalmazzuk az ismert szabályt :


Név Funkció Derivált
Állandó f(x) = C, CR 0 (igen, nulla!)
Hatvány racionális kitevővel f(x) = x n n · x n − 1
Sinus f(x) = bűn x kötözősaláta x
Koszinusz f(x) = cos x −sin x(mínusz szinusz)
Tangens f(x) = tg x 1/cos 2 x
Kotangens f(x) = ctg x − 1/sin 2 x
Természetes logaritmus f(x) = log x 1/x
Önkényes logaritmus f(x) = log a x 1/(x ln a)
Exponenciális függvény f(x) = e x e x(nem változott semmi)

Ha egy elemi függvényt megszorozunk egy tetszőleges állandóval, akkor az új függvény deriváltja is könnyen kiszámítható:

(C · f)’ = C · f ’.

Általában a konstansok kivehetők a derivált előjeléből. Például:

(2x 3)' = 2 · ( x 3) = 2 3 x 2 = 6x 2 .

Nyilvánvalóan az elemi függvények összeadhatók, szorozhatók, oszthatók – és még sok más. Így jelennek meg új, már nem különösebben elemi, hanem bizonyos szabályok szerint differenciált funkciók. Ezeket a szabályokat az alábbiakban tárgyaljuk.

Az összeg és a különbözet ​​származéka

Legyenek adottak a függvények f(x) És g(x), amelynek származékait ismerjük. Például vehetjük a fent tárgyalt elemi függvényeket. Ezután megtalálhatja ezen függvények összegének és különbségének deriváltját:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Tehát két függvény összegének (különbségének) deriváltja egyenlő a deriváltak összegével (különbségével). Több kifejezés is lehet. Például, ( f + g + h)’ = f ’ + g ’ + h ’.

Szigorúan véve az algebrában nincs a „kivonás” fogalma. Létezik a „negatív elem” fogalma. Ezért a különbség fgösszegként átírható f+ (-1) g, és akkor már csak egy képlet marad - az összeg deriváltja.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Funkció f(x) két elemi függvény összege, ezért:

f ’(x) = (x 2 + bűn x)’ = (x 2)’ + (bűn x)’ = 2x+ cos x;

Hasonlóan indokoljuk a funkciót g(x). Csak már három tag van (az algebra szempontjából):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Válasz:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

A termék származéka

A matematika logikai tudomány, ezért sokan úgy gondolják, hogy ha egy összeg deriváltja egyenlő a deriváltok összegével, akkor a szorzat deriváltja sztrájk">egyenlő a származékok szorzatával. De bassza meg! Egy szorzat deriváltját egy teljesen más képlettel számítják ki. Nevezetesen:

(f · g) ’ = f ’ · g + f · g

A képlet egyszerű, de gyakran elfelejtik. És nem csak iskolások, hanem diákok is. Az eredmény helytelenül megoldott problémák.

Feladat. Keresse meg a függvények deriváltjait: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Funkció f(x) két elemi függvény szorzata, tehát minden egyszerű:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (-sin x) = x 2 (3 cos xx bűn x)

Funkció g(x) az első szorzó egy kicsit bonyolultabb, de az általános séma nem változik. Nyilvánvalóan a függvény első tényezője g(x) egy polinom, deriváltja pedig az összeg deriváltja. Nekünk van:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)” · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Válasz:
f ’(x) = x 2 (3 cos xx bűn x);
g ’(x) = x(x+ 9) · e x .

Kérjük, vegye figyelembe, hogy az utolsó lépésben a derivált faktorizálásra kerül. Formálisan ezt nem kell megtenni, de a legtöbb derivált nem önmagában számít, hanem a függvény vizsgálatára. Ez azt jelenti, hogy a továbbiakban a derivált nullával lesz egyenlő, előjelei meghatározásra kerülnek, és így tovább. Ilyen esetben jobb, ha egy kifejezést faktorizált.

Ha két funkció van f(x) És g(x), és g(x) ≠ 0 azon a halmazon, amelyre kíváncsiak vagyunk, új függvényt definiálhatunk h(x) = f(x)/g(x). Egy ilyen függvényhez a derivált is megtalálható:

Nem gyenge, igaz? Honnan jött a mínusz? Miért g 2? És így! Ez az egyik legösszetettebb képlet – palack nélkül nem tudod kitalálni. Ezért jobb, ha tanulmányozzuk konkrét példák.

Feladat. Keresse meg a függvények származékait:

Minden tört számlálója és nevezője elemi függvényeket tartalmaz, így csak a hányados derivált képletére van szükségünk:


A hagyomány szerint tizedeljük a számlálót – ez nagyban leegyszerűsíti a választ:

Egy összetett függvény nem feltétlenül egy fél kilométer hosszú képlet. Például elég a függvényt venni f(x) = bűn xés cserélje ki a változót x, mondjuk, be x 2 + ln x. Majd sikerülni fog f(x) = bűn ( x 2 + ln x) - ez egy összetett függvény. Ennek is van származéka, de a fent tárgyalt szabályok alapján nem lehet megtalálni.

Mit kellene tennem? Ilyen esetekben egy összetett függvény deriváltjának változó és képlet lecserélése segít:

f ’(x) = f ’(t) · t', Ha x helyettesíti t(x).

A képlet megértésével általában még szomorúbb a helyzet, mint a hányados származékával. Ezért is célszerű konkrét példákkal magyarázni, azzal Részletes leírás minden lépés.

Feladat. Keresse meg a függvények deriváltjait: f(x) = e 2x + 3 ; g(x) = bűn ( x 2 + ln x)

Vegye figyelembe, hogy ha a függvényben f(x) a 2. kifejezés helyett x+3 könnyű lesz x, akkor kapunk egy elemi függvényt f(x) = e x. Ezért cserét végzünk: legyen 2 x + 3 = t, f(x) = f(t) = e t. Egy komplex függvény deriváltját a következő képlettel keressük:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

És most - figyelem! A fordított cserét végezzük: t = 2x+ 3. Kapjuk:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Most nézzük a függvényt g(x). Nyilván cserélni kell x 2 + ln x = t. Nekünk van:

g ’(x) = g ’(t) · t’ = (bűn t)’ · t' = cos t · t

Fordított csere: t = x 2 + ln x. Akkor:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)' = cos ( x 2 + ln x) · (2 x + 1/x).

Ez minden! Amint az utolsó kifejezésből látható, az egész probléma a derivált összeg kiszámítására redukálódott.

Válasz:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Az órákon nagyon gyakran a „származék” kifejezés helyett a „prím” szót használom. Például az összeg vonása megegyezik a vonások összegével. Így világosabb? Hát az jó.

Így a derivált kiszámítása az ugyanazon ütésektől való megszabaduláshoz vezet a fent tárgyalt szabályok szerint. Utolsó példaként térjünk vissza a derivált hatványhoz racionális kitevővel:

(x n)’ = n · x n − 1

Ezt kevesen tudják a szerepben n lehet, hogy törtszám is. Például a gyökér az x 0.5. Mi van, ha valami díszes van a gyökér alatt? Az eredmény ismét egy összetett funkció lesz - szeretnek ilyen konstrukciókat adni teszteken és vizsgákon.

Feladat. Keresse meg a függvény deriváltját:

Először írjuk át a gyököt hatványként racionális kitevővel:

f(x) = (x 2 + 8x − 7) 0,5 .

Most csinálunk egy cserét: hagyjuk x 2 + 8x − 7 = t. A származékot a következő képlettel találjuk meg:

f ’(x) = f ’(t) · t ’ = (t 0,5)” · t' = 0,5 · t–0,5 · t ’.

Végezzük el a fordított cserét: t = x 2 + 8x− 7. Van:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)’ = 0,5 · (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Végül vissza a gyökerekhez:

 


Olvas:



Pálcák lovagja: jelentése (Tarot)

Pálcák lovagja: jelentése (Tarot)

A bot lovagja – Kisebb Arkánum Az asztrológia szerint a bot lovagja a Mars bolygónak felel meg szenvedélyével. A bolygó a Kosban lakik – valójában...

Vargányás ételek. Receptek. Pácolt vargánya télre - lépésről lépésre recept fotókkal az otthoni savanyításról

Vargányás ételek.  Receptek.  Pácolt vargánya télre - lépésről lépésre recept fotókkal az otthoni savanyításról

A vargánya valóban király a gombák között. Míg a többi termőtestet fel kell főzni, majd megsütni, addig a fehérhez nem...

Grillezett csirke - lépésről lépésre pác receptek és főzési technológia sütőben, mikrohullámú sütőben vagy serpenyőben

Grillezett csirke - lépésről lépésre pác receptek és főzési technológia sütőben, mikrohullámú sütőben vagy serpenyőben

A grillezett csirkét sokan nem túl egészséges ételnek tartják. Az ilyen hírnév kialakításában jelentős szerepe volt a bolti baromfihúsnak, amely...

Hogyan kell megfelelően főzni a grillezett csirkét

Hogyan kell megfelelően főzni a grillezett csirkét

1. A csirkét előzetesen sóban és paprikában kell pácolni. Ehhez a csirkét kívül-belül át kell öblíteni, és bőségesen bekenni sóval és paprikával....

feed-image RSS