Главная - Электричество 
Компьютер внутри нас. Презентация к индивидуальному проекту на тему: Компьютер внутри нас

Министерство здравоохранения Саратовской области

государственное автономное профессиональное образовательное учреждение Саратовской области «Балаковский медицинский колледж»

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

Тохтияровой Алины

«Компьютер и здоровье»

Презентация

Специальность 34.02.01 Сестринское дело

Учебная дисциплина «Информатика»

Оглавление

Цель данной работы: 3

Актуальность проекта: 4

Основная часть 4

Рассмотрим основные аспекты длительной работы за компьютером 6

Комплексы упражнений для глаз и тела 7

Организация рабочего места 8

Сколько можно сидеть за компьютером? 10

Заключение 11

Список использованной литературы 12

Введение

Компьютер- это то, без чего не может обойтись современный человек. «Примите некоторые меры предосторожности, иначе вам придется расплачиваться. Наш организм - не компьютер. В нас есть детали, которые нельзя заменить» (Рик Пирсол).

Любой прогресс в науке или технике, наряду с ярко выраженными безусловно положительными явлениями, неизбежно влечет за собой и отрицательные стороны. Вопросы компьютеризации общества сейчас стоят в ряду множества факторов, влияющих на здоровье людей. Именно поэтому так важно оценить степень влияния информационных технологий на здоровье человека. В наши дни мало кто сомневается, что работа на персональном компьютере влияет на здоровье человека не самым лучшим образом. В то же время, мало у кого возникает мысль отказаться от работы с ПК ради спасения здоровья. Людям случалось не отказываться и от более вредных занятий, к тому же, пользы от ПК заметно больше чем вреда. Всё больше становится людей, проводящих за компьютером по несколько часов ежедневно. Поэтому, всё важнее становится разобраться, как может пользователь снизить, а то и вовсе устранить, вред, причиняемый компьютером.

Цель данной работы:

    показать влияние работы с компьютером на здоровье человека

    Узнать, какие существуют вредные факторы, воздействующие на человека за компьютером

    Познакомиться с несколькими практическими советами, как научиться расслабляться и снимать напряжение

    Узнать, как правильно нужно организовывать своё рабочее место за компьютером

    Узнать, какой должна быть правильная поза оператора компьютера.

Проблемные вопросы проекта

1. Как влияет компьютер на здоровье человека?

Актуальность проекта :

Жизнь современного человека невозможно представить без компьютера. Наша страна занимает передовые позиции в области использования информационных технологий в научной и учебной деятельности. Однако, общеизвестно, что электромагнитные излучения имеют свойство - накапливаться в биологическом организме и постепенно вызывать необратимые процессы. Компьютер влияет на все биологические характеристики организма человека, и в первую очередь, на его физическое и психическое здоровье, может вызвать серьезную зависимость. И особенно уязвимы в этом плане дети и подростки, которые еще не сформировались как личности и легко поддаются пагубному влиянию. Компьютер влияет на все биологические характеристики организма человека, и в первую очередь, на его физическое и психическое здоровье, может вызвать серьезную зависимость. Погружаясь в виртуальный мир, человек как бы отгораживается от реальности, перестает интересоваться окружающим. И особенно уязвимы в этом плане дети и подростки, которые еще не сформировались как личности и легко поддаются пагубному влиянию.

Основная часть

Компьютер столь же безопасен, как и любой другой бытовой прибор. Но, как и в случае с другими бытовыми приборами, существуют потенциальные угрозы для здоровья. Влияние компьютера на здоровье человека- одна из спорных тем, горячо обсуждаемых современными врачами. До сих пор не доказано его прямое вредное воздействие на человеческий организм. Существуют лишь определенные факторы, располагающие к возникновению проблем со здоровьем у людей, являющихся активными пользователями компьютеров. Впрочем, при соблюдении правильного режима работы их вредоносное воздействие можно свести к минимуму.

Влияние компьютера на здоровье человека характеризуется:

    постоянным сидячим положением,

    большим зрительным напряжением,

    а также нервно-эмоциональным напряжением, связанным с влиянием компьютера на психику человека.

Опасность компьютера для здоровья проявляется в том, что воздействие перечисленных проблем на здоровье человека проявляется далеко не сразу, а лишь спустя какое-то время. Основные факторы, оказывающие влияние на здоровье человека при работе за компьютером:

    мерцание монитора (влияет на глаза),

    электромагнитное излучение,

    шум (раздражает),

    воздействие на психику,

    стесненная поза (действует на позвоночник),

    микроклимат помещения (влажность, пыльность),

    режим работы (необходимые перерывы на отдых).

Психологические симптомы, которые испытывает интернет - зависимый человек :

    хорошее самочувствие или эйфория за компьютером

    невозможность остановиться

    увеличение количества времени проводимого за компьютером

    Пренебрежение семьей и друзьями

    ощущения пустоты, депрессии, раздражения не за компьютером

    ложь работодателям или членам семьи о своей деятельности

    проблемы с работой или учебой.

Также опасные сигналы:

    навязчивое стремление постоянно проверять электронную почту

    предвкушение следующего сеанса он-лайн

    увеличение времени, проводимого он-лайн

    увеличение количества денег, расходуемых он- лайн

Компьютер может стать другом или заклятым врагом, может помочь в беде, а может добавить кучу проблем, может помочь найти единомышленников, а может привести к одиночеству.

Длительная работа за компьютером

По сути дела только длительная работа за компьютером может оказать существенное влияние на здоровье человека. В наше время использование компьютеров во всех сферах жизни становится все шире и потому все больше людей вынуждены проводить целые дни у мониторов компьютеров.

Рассмотрим основные аспекты длительной работы за компьютером

Болезни от компьютера:

Сколиоз, ожирение, туннельный синдром, угроза выкидыша у беременных, остеохондроз, аллергия, простатит, геморрой, ухудшение зрения.

Проблемы опорно-двигательного аппарата

Рост среднего человека утром на два-три сантиметра больше, чем вечером, так как позвоночник за целый день стояче- сидячей жизни заметно сжимается. Если к тому же имеет место хоть незначительное искривление позвоночника, то неизбежно защемление основания нерва. Характерные для людей, много проводящих время за компьютером, боли в пояснице и в основании шеи запросто могут привести к болезням вен и суставов конечностей. "Синдром программиста" (боли между лопатками) представляет опасность для сердца и лёгких. Он обычно сопровождается спазмом трапециевидных мышц, которые в попытках спасти позвоночник пережимают артерии, идущие к мозгу (давящие боли затылке). Чуть выше может защемиться нерв, идущий к лицу и среди прочего контролирующий глаза. Боли в середине спины, на стыке грудного и поясничного отделов, обещают пользователю гастрит, а то и язву желудка, но задолго до этого обеспечивают беспричинным "общим утомлением".

Воздействие компьютера на зрение

Глаза регистрируют самую мелкую вибрацию текста или картинки, а тем более мерцание экрана. Перегрузка глаз приводит к потере остроты зрения. Плохо сказываются на зрении неудачный подбор цвета, шрифтов, компоновки окон в используемых Вами программах, неправильное расположение экрана.

Зрительные» жалобы людей, проводящих большую часть рабочего времени за экраном монитора

    затуманивание зрения (снижение остроты зрения);

    замедленная перефокусировка с ближних предметов на дальние и обратно (нарушение аккомодации);

двоение предметов;

    быстрое утомление при чтении;

Комплексы упражнений для глаз и тела

Раз в час нужно отрываться от работы в сидячем положении: просто походить по комнате, сделать несколько упражнений для разминки суставов, предотвращения застоя крови (очень хороши приседания, наклоны туловища). Не стоит забывать о соблюдении режима питания и сна. Прогулки на свежем воздухе, отказ от вредных привычек также не повредят.

Чтобы избежать усталости позвоночника, нужно соблюдать правильную осанку. Не секрет, что правильно подобранные стул и высота стола - залог комфорта во время работы за компьютером. Чтобы предупредить возникновение проблем со зрением, рекомендуется выполнять следующие несложные упражнения для глаз:

    расслабьтесь, закройте глаза и посидите так несколько минут;

    сделайте вращения глазами сначала по часовой стрелке, а затем в

обратном направлении;

    найдите удаленный предмет, посмотрите сначала на него, а затем переведите взгляд на предмет, расположенный вблизи

Организация рабочего места

Освещение при работе с компьютером должно быть не слишком ярким, но и не отсутствовать совсем, идеальный вариант - приглушенный рассеянный свет. Поставьте стол так, чтобы окно не оказалось перед вами. Если это неизбежно, купите плотные шторы или жалюзи, которые отсекут свет. Если окно сбоку, решение то же - шторы, жалюзи Экран монитора должен быть абсолютно чистым; если вы работаете в очках, они тоже должны быть абсолютно чистыми. Протирайте экран монитора (лучше специальными салфетками и/или жидкостью для протирки мониторов) минимум раз в неделю, следите за кристальной прозрачностью очков каждый день. Располагайте монитор и клавиатуру на рабочем столе прямо, ни в коем случае не наискосок. Центр экрана должен быть примерно на уровне ваших глаз или чуть ниже. Держите голову прямо, без наклона вперед. Периодически на несколько секунд закрывайте веки, дайте мышцам глаз отдохнуть и расслабиться Экран монитора должен быть удален от глаз минимум на 50-60 сантиметров. Если на таком расстоянии вы плохо видите изображение, выберите для работы шрифт большего размера. Если близорукость превышает 2-4 единицы, необходимо иметь две пары очков для работы "вблизи" и "для дали".

Правильная поза оператора компьютера

Следует работать на расстоянии 60-70 см от экрана монитора, допустимо не менее 50 см, соблюдая правильную посадку, не сутулясь, не наклоняясь.

    Учащимся, имеющим очки для постоянного ношения, следует работать в очках.

    Освещение должно быть достаточным.

    Нельзя работать при плохом самочувствии.

    Положение при работе должно быть таким, чтобы линия взора приходилась в центр экрана. Не следует наклоняться и сутулиться при пользовании клавиатурой и чтении с экрана монитора.

    Время непрерывной работы за компьютером не должно превышать 30 минут.

Время работы за компьютером.

Данные по гимназии № 1 г. Балаково.

Сколько можно сидеть за компьютером?

Для каждого возраста существуют свои временные ограничения:

    взрослым, чья работа связана с постоянным пребыванием у компью-тера, рекомендуется находиться рядом с монитором не более восьми часов в день, делая короткие перерывы на отдых каждый час (в это время лучше всего сделать разминку для глаз и спины);

    подросткам в возрасте от двенадцати до шестнадцати лет следует проводить у компьютера не более двух часов в день;

    детям в возрасте от семи до двенадцати лет - не более одного часа в

    детям в возрасте от пяти до семи лет - максимум полчаса в день.

Данные о студентах колледжа за 2016-2017 уч. год в гр. 621.

Заключение

Любой прогресс в науке или технике, наряду с ярко выраженными безусловно положительными явлениями, неизбежно влечет за собой и отрицательные стороны. Вопросы компьютеризации общества сейчас стоят в ряду множества факторов, влияющих на здоровье людей. Именно поэтому так важно оценить степень влияния информационных технологий на здоровье человека. Интерес детей к компьютеру огромен, и нужно направить его в полезное русло. Компьютер должен стать для ребёнка равноправным партнёром, способным очень тонко реагировать на все его действия и запросы. Он, с одной стороны, - терпеливый учитель и мудрый наставник, помощник в учёбе, а в дальнейшем и в работе, а с другой стороны - творец сказочных миров и отважных героев, друг, с которым нескучно. Соблюдение несложных правил работы на компьютере позволит сохранить здоровье и одновременно открыть ребёнку мир огромных возможностей.

Можно заменить или починить пришедший в негодность компьютер, но с человеческим организмом такое не проходит. Поэтому, покупая компьютер, нужно задуматься, что дороже и помимо производительности своего электронного помощника, нужно позаботиться и о себе. Можно успешно пользоваться компьютером и при этом оставаться здоровым, соблюдая несложные рекомендации врачей. Здоровье – величайший дар природы и каждый человек должен решить для себя вопрос: Может ли компьютер нанести вред его здоровью или нет?

Список использованной литературы

    Демирчоглян Г.Г. Компьютер и здоровье. – М.: Издательство Лукоморье, Темп МБ, Новый Центр, 2007. – 256 с.

    Степанова М. Как обеспечить безопасное общение с компьютером.– 2007, № 2. – С.145-151.

    Морозов А.А. Экология человека, компьютерные технологии и безопасность оператора.– 2006, № 1. – С. 13-17.

    Жураковская А.Л. Влияние компьютерных технологий на здоровье пользователя.– 2006, № 2. – С.169-173.

    Ушаков И.Б. и др. Оценка физических характеристик мониторов современных персональных компьютеров с позиций стандартов

безопасности и характера деятельности.//

6. www.comp-doctor.ru, разделы «Компьютер и здоровье», «Рабочее место».

7.www.iamok.ru, раздел «Компьютер и здоровье».

8.http://www.compgramotnost.ru/computer-i-zdorovye/vliyanie-kompyutera-na-

zdorove-cheloveka

9.http://vse-sekrety.ru/15-kompyuter-i-zdorove.html

10.http://www.bestreferat.ru/referat-176891.html

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Средняя общеобразовательная школа

с углубленным изучением отдельных предметов №256

Р Е Ф Е Р А Т

по информатике

ТЕМА: Компьютер внутри человека

Исполнитель Руководитель

Шмелёва Михайличенко

Анна Алексеевна Наталия Викторовна

11 «А»

г. Фокино

2006

Оглавление

Введение...............................................................................................3

1. Нейрон – структурная единица ЦНС.....................................................4

2. Принципы кодирования информации в ЦНС..........................................5

2.1. Нейронные механизмы восприятия.................................................8

2.2.Восприятие цвета с позиции векторной модели

обработки информации.................................................................11

вегетативными реак­циями............................................................12

3. Нейронные сети................................................................................14

4. Настоящий компьютер внутри человека..............................................16

Заключение..........................................................................................17

Список литературы................................................................................18

Приложение 1........................................................................................19

Приложение 2........................................................................................21

Введение

Многие исследователи уподобляют нервную систему компьютеру, регули­рующему и координирующему жизнедеятельность организма. Чтобы человек удачно вписался в картину окружающего мира, этому внутреннему компью­теру приходится решать четыре главные задачи. Они являются основными функциями нервной системы.

Прежде всего, она воспринимает все действующие на организм раздражи­тели. Всю воспринятую информацию о температуре, цвете, вкусе, запахе и других характеристиках явлений и предметов нервная система преобразует в электрические импульсы, которые передаёт в отделы мозга - головного и спинного. Каждый из нас обладает «биологическим телеграфом» - в его пре­делах сигналы распространяются со скоростью до 400 км/час. «Теле­графные провода» - корешки, корешковые нервы, узлы и магистральные нервные стволы. Их насчитывают 86, причём каждый разделяется на множе­ство более мелких веточек, и все они «приписаны» к периферической нерв­ной системе (см. Приложение 1, рис.1).

Наш внутренний компьютер обрабатывает поступившие данные: анализи­рует, систематизирует, запоминает, сравнивает с ранее полученными сооб­щениями и уже имеющимся опытом. «Генеральный штаб», обрабатывающий сигналы, подаваемые как извне, так и изнутри тела, - головной мозг. Вер­ный «адъютант» при штабе - мозг спинной ­– служит своеобразным органом ме­стного самоуправления, а также связующим звеном с вышестоящими отде­лами биологического компьютера. Вместе с головным спинной мозг обра­зует центральную нервную систему (ЦНС).

В своем реферате я рассмотрела процессы передачи и кодирования ин­формации, происходящие в нервной системе, с точки зрении информацион­ных технологий, кратко рассказала об искусственных нейронных сетях и о компьютере, способном работать внутри человека.

1. Нейрон – структурная единица ЦНС

Безупречную слаженность нервной системы обеспечивают 20 млрд. ней­ронов (греч. «нейрон» - «жила», «нерв») - специализированных клеток. Четвёр­тая часть нейронов сосредоточена в спинном мозге и примыкающих к нему спинномозговых узлах. Остальные располагаются в так называемом се­ром веществе (коре и подкорковых центрах) головного мозга.

Нейрон состоит из тела (сома с ядром), множества древовидных отро­стков - дендритов - и длинного аксона (см. Приложение 1, рис.3). Дендриты слу­жат в качестве входных кана­лов для нервных импульсов от других ней­ронов. Импульсы поступают в сому, вызывая её специфическое возбужде­ние, рас­пространяющееся затем по вы­водному отростку - аксону. Соеди­няются ней­роны с помощью спе­ци­альных контактов - синапсов, в ко­торых разветвления аксона одного ней­рона под­ходят очень близко (на расстоянии нескольких десятков микронов) к соме или дендритам друго­го нейрона.

Нейроны, размещающиеся в ре­цепторах, воспринимают внешние раздра­же­ния, в сером веществе ство­ла головного и спинного мозга - управляют дви­жениями человека (мышцами и железами), в мозге - связывают чувстви­тельные и двига­тельные нейроны. Последние обра­зуют различные мозговые центры, где происходит преобразование инфор­мации, поступившей от внеш­них раз­дражителей, в двигательные сигналы.

Как же работает эта система? В нейронах происходят три основных про­цесса: синаптическое возбужде­ние, синаптическое торможение и возникно­вение нервных импульсов. Синаптические процессы обеспе­чиваются осо­быми химическими веществами, которые выделяются окончаниями одного нейрона и вза­имодействуют с поверхностью дру­гого. Синаптическое возбуж­дение вы­зывает ответную реакцию нейрона и при достижении определён­ного по­рога переходит в нервный импульс, быстро распространяющийся по отросткам. Торможение, напротив, уменьшает общий уровень возбуди­мости нейрона.

2.Принципы кодирования информации в нервной системе

Сегодня можно говорить о нескольких принципах кодирования в нервной системе. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие - более сложны и характеризуют пе­редачу информации на более высоких уровнях нервной системы, включая кору.

Одним из простых способов кодирования информации признается специ­фич­ность рецепторов, избирательно реагирующих на определенные пара­метры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др.

Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Час­тотный способ кодирования информации об интенсивности стимула, вклю­чающего операцию логарифмирования, согласуется с психофизическим за­коном Г. Фехнера о том, что величина ощущения пропорциональна лога­рифму интенсивности раздражителя.

Однако позже закон Фехнера был подвергнут серьезной критике. С. Сти­вене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимо­сти.

Анализ передачи сигнала о вибрации от соматических рецепторов пока­зал, что информация о частоте вибрации передается с помощью частоты, а ее ин­тенсивность кодируется числом одновременно активных рецепторов.

В качестве альтернативного механизма к первым двум принципам кодиро­ва­ния - меченой линии и частотного кода - рассматривают также паттерн от­вета нейрона. Устойчивость временного паттерна ответа - отличительная черта нейронов специфической системы мозга. Система передачи информа­ции о стимулах с помощью рисунка разрядов нейрона имеет ряд ограниче­ний. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно за­висит от состояния нейрона, что делает данную систему кодирования недос­таточно надежной.

Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая ус­ловные рефлексы на раздражение разных участков кожи лапы через «ка­салки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуж­дения в определенном локусе соматосенсорной коры. Пространственное со­ответствие места приложения стимула и локуса возбуждения в коре полу­чило подтверждение и в других анализаторах: зрительном, слуховом. Тоно­топическая проекция в слуховой коре отражает пространственное рас­поло­жение волосковых клеток кортиевого органа, избирательно чувстви­тельных к различной частоте звуковых колебаний. Такого рода проекции можно объ­яснить тем, что рецепторная поверхность отображается на карте коры по­средством множества параллельных каналов - линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности мак­симум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раз­дражение определенного участка рецепторной поверхности. Детекторы ло­кальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наи­более простыми детекторами. Совокупность детекторов локальности обра­зует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором.

Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а другими признаками. Появ­ление локуса возбуждения на детекторной карте зависит от параметров сти­мула. С их изменением локус возбуждения на карте смещается. Для объясне­ния организации нейронной сети, работающей как детекторная сис­тема, Е.Н. Соколов предложил механизм векторного кодирования сигнала.

Принцип векторного кодирования информации впервые был сформулиро­ван в 50-х годах шведским ученым Г. Йохансоном, который и положил на­чало новому направлению в психологии - векторной психологии. Г. Йохансон по­казал, что если две точки на экране движутся навстречу друг другу - одна по горизонтали, другая по вертикали, - то человек видит дви­жение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Движение точки рассмат­ривается им как результат формирования двухкомпонентного вектора, отра­жающего действие двух независимых факторов (движения в го­ризонтальном и вертикальном направлениях). В дальнейшем векторная мо­дель была рас­пространена им на восприятие движений корпуса и конечностей человека, а также на движение объектов в трехмерном про­странстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигатель­ных и вегетативных реакций.

Векторная психофизиология - новое направление, ориентированное на со­единение психологических явлений и процессов с векторным кодирова­нием информации в нейронных сетях.

2.1. Нейронные механизмы восприятия

Сведения о нейронах сенсор­ных систем, накопленные за последние десятилетия, подтверждают детекторный принцип нейронной организации са­мых разных анализаторов. Рассмотрим механизмы восприятия в нервной системе на примере зрительного анализатора.

Для зрительной коры были описаны нейроны-де­текторы, избирательно отвечающие на элементы фигуры, контура - ли­нии, полосы, углы.

Важным шагом в развитии теории сенсорных систем явилось открытие константных нейронов-детекторов, учитывающих, кроме зрительных сигна­лов, сигналы о положении глаз в орбитах. В теменной коре реакция кон­стантных нейронов-детекторов привязана к определенной области внешнего пространства, образуя константный экран. Другой тип константных нейро­нов-детекторов, кодирующих цвет, открыт С. Зеки в экстрастриарной зри­тельной коре. Их реакция на определенные отражательные свойства цвето­вой поверхности объекта не зависит от условий освещения.

Изучение вертикальных и горизонтальных связей нейронов-детекторов различного типа привело к открытию общих принципов нейронной архитек­туры коры. В. Маунткасл - ученый из медицинской школы Университета Джонса Гопкинса - в 60-х годах впервые описал вертикальный принцип ор­ганизации коры больших полушарий. Исследуя нейроны соматосенсорной коры у наркотизированной кошки, он нашел, что они по модальности сгруп­пированы в вертикальные колонки. Одни колонки реагируют на стимуляцию правой стороны тела, другие - левой, а два других типа колонок различа­лись тем, что одни из них избирательно реагировали на прикосновение или на отклонение волосков на теле (т.е. на раздражение рецепторов, располо­женных в верхних слоях кожи), другие - на давление или на движение в суставе (на стимуляцию рецепторов в глубоких слоях кожи). Колонки имели вид трехмерных прямоугольных блоков разной величины и проходили через все клеточные слои. Со стороны поверхности коры они выглядели как пла­стины размером от 20-50 мкм до 0,25-0,5 мм. Позже эти данные подтвер­дились и на наркотизированных обезьянах другие исследователи уже на не­наркотизированных животных (макаках, кошках, крысах) также предста­вили дополнительные доказательства колончатой организации коры.

Благодаря работам Д. Хьюбела и Т. Визеля сегодня мы более детально представляем колончатую организацию зрительной коры. Исследователи ис­пользуют термин «колонка», предложенный В. Маунткаслом, но отмечают, что наиболее подходящим был бы термин «пластина». Говоря о колончатой организации, они подразумевают, что «некоторое свойство клеток остается постоянным во всей толще коры от ее поверхности до белого вещества, но изменяется в направлениях, параллельных поверхности коры» Сначала в зрительной коре были обнаружены группы клеток (колонок), связанных с разной глазодоминантностъю, как наиболее крупные. Было замечено, что всякий раз, когда регистрирующий микроэлектрод входил в кору обезьяны перпендикулярно ее поверхности, он встречал клетки, лучше реагирующие на стимуляцию только одного глаза. Если же его вводили на несколько мил­лиметров в сторону от предыдущего, но также вертикально, то для всех встречающихся клеток доминирующим был только один глаз - тот же, что и раньше, или другой. Если же электрод вводили с наклоном и как можно бо­лее параллельно поверхности коры, то клетки с разной глазодоми-нантно­стью чередовались. Полная смена доминантного глаза происходила примерно через каждый 1 мм.

Кроме колонок глазодоминантности, в зрительной коре разных живот­ных (обезьяна, кошка, белка) обнаружены ориентационные колонки. При верти­кальном погружении микроэлектрода через толщу зрительной коры все клетки в верхних и нижних слоях избирательно реагируют на одну и ту же ориентацию линии. При смещении микроэлектрода картина остается той же, но меняется предпочитаемая ориентация, т.е. кора разбита на колонки, предпочитающие свою ориентацию. Радиоавтографы, взятые со срезов коры после стимуляции глаз полосками, определенным образом ориентирован­ными, подтвердили результаты электрофизиологических опытов. Соседние колонки нейронов выделяют разные ориентации линий.

В коре обнаружены также колонки, избирательно реагирующие на на­правление движения или на цвет. Ширина цветочувствителъных колонок в стриарной коре около 100-250 мкм. Колонки, настроенные на разные длины волн, чередуются. Колонка с максимальной спектральной чувствительностью к 490-500 нм сменяется колонкой с максимумом цветовой чувствительности к 610 нм. Затем снова следует колонка с избирательной чувствительностью к 490-500 нм. Вертикальные колонки в трехмерной структуре коры образуют аппарат многомерного отражения внешней среды.

В зависимости от степени сложности обрабатываемой информации в зри­тельной коре выделено три типа колонок. Микроколонки реагируют на от­дельные градиенты выделяемого признака, например на ту или другую ориентацию стимула (горизонтальную, вертикальную или другую). Макроко­лонки объединяют микроколонки, выделяющие один общий признак (напри­мер, ориентацию), но реагирующие на разные значения его градиента (раз­ные наклоны - от 0 до 180°). Гиперколонка, или модуль, представляет со­бой локальный участок зрительного поля и отвечает на все стимулы, попа­дающие на него. Модуль - вертикально организованный участок коры, вы­полняющий обработку самых разнообразных характеристик стимула (ориен­тации, цвета, глазодоминантности и др.). Модуль собирается из мак­роколо­нок, каждая из которых реагирует на свой признак объекта в локаль­ном уча­стке зрительного поля. Членение коры на мелкие вертикальные подразделе­ния не ограничивается зрительной корой. Оно при­сутствует и в других областях коры (в теменной, префронтальной, моторной коре и др.).

В коре существует не только вертикальная (колончатая) упорядочен­ность размещения нейронов, но и горизонтальная (послойная). Нейроны в колонке объединяются по общему признаку. А слои объединяют нейроны, выделяю­щие разные признаки, но одинакового уровня сложности. Нейроны-детек­торы, реагирующие на более сложные признаки, локализованы в верх­них слоях.

Таким образом, колончатая и слоистая организации нейронов коры сви­де­тельствуют, что обработка информации о признаках объекта, таких, как форма, движение, цвет, протекает в параллельных нейронных каналах. Вме­сте с тем изучение детекторных свойств нейронов показывает, что принцип дивергенции путей обработки информации по многим параллельным каналам должен быть дополнен принципом конвергенции в виде иерархически орга­низованных нейронных сетей. Чем сложнее информация, тем более сложная структура иерархически организованной нейронной сети требуется для ее обработки.

2.2.Восприятие цвета с позиции векторной модели обработки информации

Анализатор цвета включает рецепторный и нейронный уровни сетчатки, ЛКТ таламуса и различные зоны коры. На уровне рецепторов падающие на сетчатку излучения видимого спектра у человека преобразуются в реакции трех типов колбочек, содержащих пигменты с максимумом поглощения кван­тов в коротковолновой, средневолновой и длинноволновой частях видимого спектра. Реакция колбочки пропорциональна логарифму интенсивности сти­мула. В сетчатке и ЛКТ существуют цветооппонентные нейроны, противопо­ложно реагирующие на пары цветовых стимулов (красный-зеленый и жел­тый-синий). Их часто обозначают первыми буквами от английских слов: +К-С; -К+С; +У-В; -У+В. Различные комбинации возбуждений колбочек вы­зы­вают разные реакции оппонентных нейронов. Сигналы от них достигают цве­точувствительных нейронов коры.

Восприятие цвета определяется не только хроматической (цветочувст­ви­тельной) системой зрительного анализатора, но и вкладом ахроматической системы. Ахроматические нейроны образуют локальный анализатор, детек­тирующий интенсивность стимулов. Первые сведения об этой системе можно найти в работах Р. Юнга, показавшего, что яркость и темнота в нервной сис­теме кодируются двумя независимо работающими каналами: нейронами В, измеряющими яркость, и нейронами В, оценивающими темноту. Существова­ние нейронов-детекторов интенсивности света было подтверждено позже, когда в зрительной коре кролика были найдены клетки, селективно реаги­рующие на очень узкий диапазон интенсивности света.

2.3.Векторная модель управления двигательными и

вегетативными реак­циями

Согласно представлению о векторном кодировании информации в ней­ронных сетях реализацию двигательного акта или ее фрагмента можно опи­сать следующим образом, обратившись к концептуальной рефлекторной дуге (см. Приложение 1, рис.2). Исполнительная ее часть представлена команд­ным нейроном или полем командных нейронов. Возбуждение командного нейрона воздейст­вует на ансамбль премоторных нейронов и порождает в них управляющий вектор возбуждения, которому соответствует определенный паттерн возбуж­денных мотонейронов, определяющий внешнюю реакцию. Поле командных нейронов обеспечивает сложный набор запрограммирован­ных реакций. Это достигается тем, что каждый из командных нейронов по­очередно может воз­действовать на ансамбль премоторных нейронов, создавая в них специфиче­ские управляющие векторы возбуждения, которые и определяют разные внешние реакции. Все разнообразие реакций, таким образом, можно пред­ставить в пространстве, размерность которого опреде­ляется числом премо­торных нейронов, возбуждение последних образуют управляющие векторы.

Структура концептуальной рефлекторной дуги включает блок рецепто­ров, выделяющих определенную категорию входных сигналов. Второй блок - предетекторы, трансформирующие сигналы рецепторов в форму, эффек­тив­ную для селективного возбуждения детекторов, образующих карту ото­бра­жения сигналов. Все нейроны-детекторы проецируются на командные нейроны параллельно. Имеется блок модулирующих нейронов, которые ха­рактеризуются тем, что они не включены непосредственно в цепочку пере­дачи информации от рецепторов на входе к эффекторам на выходе. Образуя «синапсы на синапсах», они модулируют прохождение информации. Модули­рующие нейроны можно разделить на локальные, оперирующие в пределах рефлекторной дуги одного рефлекса, и генерализованные, охватывающие своим влиянием рефлекторных дуг и тем самым определяющие общий уро­вень функционального состояния. Локальные модулирующие нейроны, уси­ливая или ослабляя синаптические входы на командных нейронах перерас­пределяют приоритеты реакций, за которые эти командные нейроны ответст­венны. Модулирующие нейроны действуя через гиппокамп, куда на нейроны «новизны» и «тождества» проецируются детекторные карты.

Реакция командного нейрона определяется скалярным произведением вектора возбуждения и вектора синаптических связей. Когда вектор синап­тических связей в результате обучения совпадает с вектором возбуждения по направлению, скалярное произведение достигает максимума и командный нейрон становится селективно настроенным на условный сигнал. Дифферен­цировочные раздражители вызывают векторы возбуждения, отличающиеся от того, который порождает условный раздражитель. Чем больше это разли­чие, тем меньше вероятность вызова возбуждения командного нейрона. Для выполнения произвольной двигательной реакции требуется участие нейро­нов памяти. На командных нейронах сходятся пути не только от детекторных сетей, но и от нейронов памяти.

Управление двигательными и вегетативными реакциями осуществляется комбинациями возбуждений, генерируемыми командными нейронами, кото­рые действуют независимо друг от друга, хотя, по-видимому, некоторые стандартные паттерны их возбуждений появляются более часто, чем другие.

3. Нейронные сети

Изучение структуры и функций ЦНС привело к появлению новой научной дисциплины – нейроинформатики. По сути, нейроинформатика есть способ решения всевозможных задач с помощью искусственных нейронных сетей, реализованных на компьютере.

Нейронные сети представляют собой новую и весьма перспективную вы­чис­лительную технологию, дающую новые подходы к исследованию дина­миче­ских задач в финансовой области. Первоначально нейронные сети открыли новые возможности в области распознавания образов, затем к этому приба­вились статистические и основанные на методах искусственного ин­теллекта средства поддержки принятия решений и решения задач в сфере финансов.

Способность к моделированию нелинейных процессов, работе с зашум­ленными данными и адаптивность дают возможности применять нейронные сети для решения широкого класса финансовых задач. В последние не­сколько лет на основе нейронные сетей было разработано много программ­ных систем для применения в таких вопросах, как операции на товарном рынке, оценка вероятности банкротства банка, оценка кредитоспособности, контроль за инвестициями, размещение займов.

Приложения нейронные сетей охватывают самые разнообразные об­ласти: распознавание образов, обработка зашумленные данных, дополнение образов, ассоциативный поиск, классификация, оптимизация, прогноз, ди­агностика, обработка сигналов, абстрагирование, управление процессами, сегментация данных, сжатие информации, сложные отображе­ния, моделиро­вание сложных процессов, машинное зрение, распознавание речи.

Несмотря на большое разнообразие вариантов нейронных сетей, все они имеют общие черты. Так, все они, так же как и мозг человека, состоят из большого числа однотипных элементов – нейронов, которые имитируют ней­роны головного мозга, связанных между собой. На рисунке 4 (см. Приложе­ние 1) показана схема нейрона.

Из рисунка видно, что искусственный нейрон, так же как и живой, состоит из синапсов, связывающих входы нейрона с ядром, ядра нейрона, которое осу­ществляет обработку входных сигналов и аксона, который связывает ней­рон с нейронами следующего слоя. Каждый синапс имеет вес, который опре­де­ляет, насколько соответствующий вход нейрона влияет на его состояние.

Со­стояние нейрона определяется по формуле

где

число входов нейрона;

значение i-го входа нейрона;

вес i-го синапса.

Затем определяется значение аксона нейрона по формуле

Г
де - некоторая функция, которая называется активационной. Наиболее часто в качестве активационной функции используется так называемый сиг­моид, который имеет следующий вид:

4. Настоящий компьютер внутри человека

В предыдущих разделах о компьютере внутри человека говорилось в пере­носном смысле; однако достижения науки дают основания перейти от мета­форы к прямому значению слов.

Израильские ученые создали молекулярный компьютер, который использует ферменты для произведения подсчетов.

Итамар Виллнер, сконструировавший молекулярный калькулятор со своими коллегами в Еврейском университете Иерусалима, считает, что ком­пьютеры, работающие на ферментах, когда-нибудь можно будет вживлять в человече­ский организм и использовать, например, для регулирования вы­броса ле­карств в систему метаболизма.

Ученые создали свой компьютер, используя два фермента - глюкозу де­гидро­геназу (glucose dehydrogenase, GDH) и пероксидаз из хрена (horseradish peroxidase, HRP) - для запуска двух взаимосвязанных химиче­ских реакций. Два химических компонента - перекись водорода и глюкоза - использовались как вводимые значения (А и В). Присутствие каждого из хи­мических веществ соответствовало 1 в двоичном коде, а отсутствие - 0 в двоичном коде. Хими­ческий результат ферментной реакции определялся оп­тически.

Ферментный компьютер использовали для проведения двух фундаменталь­ных логических вычислений, известных как AND (где A и B должны быть равными единице) и XOR (где A и B должны иметь разные зна­чения). Добав­ление еще двух ферментов - глюкозооксидазы (glucose oxidase) и каталазы (catalase) - связало две логические операции, дав воз­можность сложить дво­ичные числа, используя логические функции.

Ферменты уже используют при вычислениях, применяя специально закоди­рованную ДНК. Такие ДНК-компьютеры потенциально способны пре­взойти по скорости и мощности кремниевые компьютеры, поскольку могут осуществ­лять множество параллельных вычислений и помещать огромное количество компонентов в крошечное пространство.

Заключение

Работая над рефератом, я узнала много нового об устройстве центральной нервной системы человека и обнаружила тесную связь между процессами, происходящими внутри человека и внутри машины. Несомненно, изучение устройства ЦНС и мозга открывает перед человечеством огромные перспек­тивы. Нейронные сети уже сейчас решают задачи, непосильные для искусст­венного интеллекта. Нейрокомпьютеры особенно эффективны там, где нужен аналог человеческой интуиции для распознавания образов (узнавания лиц, чтения рукописных текстов), подготовки аналитических прогнозов, перевода с одного естественного языка на другой и т.п. Именно для таких задач обычно трудно сочинить явный алгоритм. В ближайшем будущем возможно создание электронных носителей, сопоставимых по ёмкости с человеческим мозгом. Но для того, чтобы осуществить все смелые замыслы ученых, необ­ходима прочная теоретическая база. А обеспечить её поможет молодая, стремительно развивающаяся наука, своеобразный союз биологии и инфор­матики – биоинформатика.

Список литературы

    Энциклопедия для детей. Том 22. Информатика. М.: Аванта+, 2003.

    Энциклопедия для детей. Том 18. Человек. Ч. 1.Происхождение и природа че­ловека. Как работает тело. Искусство быть здоровым. М.: Аванта+, 2001.

    Энциклопедия для детей. Том 18. Человек. Ч. 2. Архитектура души. Психоло­гия личности. Мир взаимоотношений. Психотерапия. М.: Аванта+, 2002.

    Данилова Н.Н. Психофизиология: Учебник для вузов.- М.: Аспект Пресс, 2001

    Марцинковская Т. Д. История психологии: Учеб. пособие для студ. высш. учеб. заведений.- М.: Издательский центр "Академия", 2001

    NewScientist.com news service; Angewandte Chemie International Edition (vol. 45, p. 1572)

Приложение 1


рис.1. Нервная система человека – центральная, вегетативная и перифери­ческая


рис.2. Образование рефлекторной дуги


рис.3. Нейрон с множеством дендритов, получающий информацию через синаптический контакт с другим нейроном.


рис.4. Строение искусственного нейрона

Приложение 2

Краткий словарь терминов и понятий

Аксон - отросток нервной клетки (нейрона), проводящий нервные импульсы от тела клетки к иннервируемым органам или др. нервным клеткам. Пучки аксонов образуют нервы.

Гиппокамп - структура, расположенная в глубинных слоях доли височной го­ловного мозга.

Градиент - вектор, показывающий направление наискорейшего изменения некото­рой величины, значение которой меняется от одной точки пространства к другой.

Дендрит - ветвящийся цитоплазматический отросток нервной клетки, проводящий нервные импульсы к телу клетки.

Кортиевый орган - рецепторный аппарат слухового анализатора.

ЛКТ – латеральное коленчатое тело.

Локус - конкретный участок ДНК, отличающийся каким-либо свойством.

Нейрон - нервная клетка, состоящая из тела и отходящих от него отростков - отно­сительно коротких дендритов и длинного аксона.

Паттерн - пространственно-временная картина развития какого-то процесса.

Рецептивное поле - периферическая область, раздражение которой оказывает влияние на разряд данного нейрона.

Рецепторы - окончания чувствительных нервных волокон или специализированные клетки (сетчатки глаза, внутреннего уха и др.), преобразующие раздражения, вос­принимаемые извне (экстерорецепторы) или из внутренней среды организма (инте­рорецепторы) в нервное возбуждение, передаваемое в центральную нервную систему.

Синапс - структура, которая передает сигналы от нейрона к соседнему (или к дру­гой клетке).

Сома - 1) тело, туловище; 2) совокупность всех клеток организма, за исключением репродуктивных клеток.

Соматосенсорная кора - область коры больших полушарий мозга, где представ­лены афферентные проекции частей тела.

Таламус - основная часть промежуточного мозга. Главный подкорковый центр, на­правляющий импульсы всех видов чувствительности (температурный, болевой и др.) к стволу мозга, подкорковым узлам и коре больших полушарий.

Розовенко Ирина Владимировна

Жизнь прекрасна! Жизнь в ее многообразии – это радость и наслаждение. И никто в настоящее время не сможет убедить человечество в обратном. Научившись по своему усмотрению и потребностям управлять своими мыслями, эмоциями, желаниями и действиями в любых жизненных ситуациях, включая стрессовые и экстремальные человек приобрел бесценное чувство внутренней свободы, избавился от зависимостей, страхов, предрассудков. Он ощутил каждой клеточкой организма полноту и красоту своей собственной жизни.

Скачать:

Предварительный просмотр:

Филиал Государственного бюджетного профессионального

образовательного учреждения Иркутской области

(филиал ГБПОУ ИО ИТАС в г. Шелехове)

КОМПЬЮТЕР ВНУТРИ НАС

Индивидуальный проект выполнил:

Студент: _________________ /И.В. Розовенко/ «____» ________ 20__ г.

Подпись

группа СЭЗ-16-405

Номер

Профессия: 08.02.01.Строительство и эксплуатация зданий и сооружений

Руководитель: _____________ /Л.Г. Попова / «____» ________ 20__ г.

Подпись

Преподаватель первой квалификационной категории по дисциплине Информатика

Шелехов, 2016

Филиал государственного бюджетного профессионального образовательного учреждения Иркутской области

«Иркутский техникум архитектуры и строительства» в г. Шелехове

(Филиал ГБПОУ ИО ИТАС в г. Шелехове )

ЗАДАНИЕ НА ВЫПОЛНЕНИЕ ИНДИВИДУАЛЬНОГО ПРОЕКТА

Студента (Ф.И.О.) Розовенко Ирина Владимировна

Группа СЭЗ-16-405 Руководитель (куратор) группы Бакум Татьяна Владимировна

Тема проекта (исследования) Компьютер внутри нас

Продукт

Дисциплина (ы) Информатика

Руководитель проекта (Ф.И.О.) Попова Лариса Геннадьевна

План работы по выполнению проекта (исследования)

Разработка идеи проекта (исследования)

Продукт проектной деятельности (исследования)

Исследовательская работа по теме

Актуальность (почему эта тема важна, чем она интересна)

Жизнь прекрасна! Жизнь в ее многообразии – это радость и наслаждение. И никто в настоящее время не сможет убедить человечество в обратном. Научившись по своему усмотрению и потребностям управлять своими мыслями, эмоциями, желаниями и действиями в любых жизненных ситуациях, включая стрессовые и экстремальные человек приобрел бесценное чувство внутренней свободы, избавился от зависимостей, страхов, предрассудков. Он ощутил каждой клеточкой организма полноту и красоту своей собственной жизни.

Степень разработанности темы (анализ источников литературы: где эта тема описана )

В поиска информации по заданной теме учитывались выводы, содержащиеся в трудах по теории и практики информатики и информационных технологий

Новизна и значимость (в чем состоят новизна, практическая или социальная значимость выполняемого продукта / исследования)

Компьютер появился после изучения работы мозга. теперь его хотят ещё больше приблизить к оригиналу.

Цель

Выяснить, может ли компьютер заменить человека в ближайшем будущем.

Задачи

Для выполнения этой цели поставили следующие задачи:

  1. Получить представление об информационных процессах и особенностях их протекания в природе, компьютере, организме человека.
  2. Проанализировать и сравнить протекание информационных процессов в организме человека и в окружающей его действительности.

Объект исследования (то, что непосредственно подвергается изучению)

объектом исследования является мозг человека

Предмет исследования (аспект проблемы, характеристики, свойства объекта, исследуя которые можно познать объект и решить проблему)

В проекте предметом исследования является возможности человеческого мозга

Методы исследования

Методы исследования: сбор информации, изучение литературы, анализ информации, составление таблиц, написание проекта, оформление презентации.

Руководитель проекта ____________________/_______________/ «____»_______ 20__г.

(Подпись) (Ф.И.О.) (Дата)

Студент ____________________/_______________/ «____»_______ 20__г.

(Подпись) (Ф.И.О.) (Дата)

Куратор (руководитель) группы ________________/_______________/ «____»_______ 20__г.

(Подпись) (Ф.И.О.) (Дата)

ВВЕДЕНИЕ


Большинство рефератов, работ для олимпиады невозможно выполнить без компьютера. Ребята и дома продолжают активно использовать ЭВМ.Появилось много интересных компьютерных игр, с помощью которых можно развивать самые разнообразные навыки. В результате школьники всё больше времени проводят за компьютером и в школе, и дома. Я считаю, что компьютеры можно сравнить с живым организмом. Человек есть своего рода система. И каждый элемент в ней обладает определенными функциями. Без них никакой организм функционировать не сможет. Но есть «дополнительные» функции, необязательные для работы организма. Так действует и компьютер. У него так же, как и у живого организма, есть элементы обязательные и необязательные для его работы. Также каждый элемент компьютера можно сравнить с какими-то определенными органами, частями тела в живом организме. Например, через колонки пользователь слышит, через веб-камеру мы видим, а процессор является мозгом системы, выполняющим регулирование всех процессов и действий. Так же, как и любой живой организм, компьютер может заболеть, у обоих существуют степени сложности заболеваний. Итак, исходя из вышесказанного можно сделать вывод, что сравнение компьютера с живым организмом вполне возможно. Следовательно, как и при сравнении других вещей или каких-либо явлений, мы можем найти у этих объектов сходства и различия. Различия же могут быть следующие: - компьютер есть техническое изобретение, а значит, оно бездушно и не может испытывать каких-либо чувств и эмоций, таких как любовь, ненависть, печаль, радость и т.д. и т.п. - в компьютере заложены функции, лишь удобные для его(человека) использования, а живой организм, например тот же человек, сам наделяет себя необходимыми, возможными качествами и способностями. - компьютер обладает некоторыми способностями, которыми обладает также и живое существо, но в более совершенной степени. - человек, в отличие от компьютера, обладает свободой движения и действий. Чем же отличается мозг человека и компьютер, необходимо выяснить.

Компьютер активно вошёл в жизнь каждого школьника. В школе
появился предмет «Информатика», где обучают основам работы на ЭВМ.
Большинство рефератов, работ для олимпиады невозможно выполнить без компьютера. Ребята и дома продолжают активно использовать ЭВМ.

Появилось много интересных компьютерных игр, с помощью которых можно развивать самые разнообразные навыки. В результате школьники всё больше времени проводят за компьютером и в школе, и дома. Чем же отличается мозг человека и компьютер, необходимо выяснить.

Цель проекта : выяснить: может ли компьютер заменить человека в ближайшем будущем.

Гипотеза : информационные процессы в компьютере и в организме человека протекают одинаково.

Задачи проекта:

1. Получить представление об информационных процессах и особенностях их протекания в природе, компьютере, организме человека.

2. Проанализировать и сравнить протекание информационных процессов в организме человека и в окружающей его действительности.

объектом исследования является мозг человека, в проекте предметом исследования является возможности человеческого мозга

Актуальность: Жизнь прекрасна! Жизнь в ее многообразии – это радость и наслаждение. И никто в настоящее время не сможет убедить человечество в обратном. Научившись по своему усмотрению и потребностям управлять своими мыслями, эмоциями, желаниями и действиями в любых жизненных ситуациях, включая стрессовые и экстремальные человек приобрел бесценное чувство внутренней свободы, избавился от зависимостей, страхов, предрассудков. Он ощутил каждой клеточкой организма полноту и красоту своей собственной жизни.

Что делает человека человеком? Чего не достает машинам: чувств, абстракции, интуиции? Может ли компьютер когда-нибудь заменить человека?

В этом проекте мы попытаемся найти ответ на этот вопрос.

ЧТО ТАКОЕ КОМПЬЮТЕР

Компьютер, или электронно-вычислительная машина, - это одно из самых умных изобретений человека. Сейчас нет ни одной отрасли знания, где бы не использовались компьютеры.

Сердце компьютера - особая электронная схема, которая называется процессором. Именно она производит обработку всей информации, которая поступает в компьютер.

Руководит работой процессора программа. Она написана на специальном языке, который понимает машина, и выполняет ту же функцию, что ноты для музыканта.

Если бы не было программ, то даже самый совершенный компьютер не смог бы решить простейшей арифметической задачи.

В настоящее время создано огромное количество различных программ, благодаря которым компьютеры умеют создавать книги, переводить с одного языка на другой, выполнять сложнейшие математические расчеты и даже рисовать мультфильмы.

Таким образом – это машина, созданная человеком, работающая под руководством человека и на человека.

ЧЕЛОВЕК

Человек - общественное существо, представляющее собой высшую ступень развития жизни на Земле, способное производить орудия труда и с их помощью воздействовать на окружающий мир, обладающее сложно организованным мозгом, сознанием и членораздельной речью.

Тело человека, как и всех животных, состоит из отдельных маленьких клеточек. Они образуют различные ткани (мышечную, нервную, костную и др.), выполняющие каждая свою функцию. Из тканей составляются органы и системы - пищеварения, кровообращения, дыхания и т. д.

Человеческий организм - единое целое, и работа всех его органов тесно связана. Связь между тканями, органами и всего организма с внешней средой осуществляется нервной системой.

ВЫСШАЯ НЕРВНАЯ ДЕЯТЕЛЬНОСТЬ ЧЕЛОВЕКА

Высшая нервная деятельность (ВНД) - это деятельность коры больших полушарий головного мозга и ближайших к ней подкорковых образований, обеспечивающая наиболее совершенное приспособление (поведение) высокоорганизованных животных и человека к окружающей среде. В работе русского физиолога И. М. Сеченова «Рефлексы головного мозга» (1863) впервые была высказана мысль о связи сознания и мышления человека с рефлекторной деятельностью головного мозга. Эта идея была экспериментально подтверждена и развита академиком И. П. Павловым, который по праву является создателем учения о высшей нервной деятельности. Ее основой являются условные рефлексы.

ПОЗНАВАТЕЛЬНЫЕ ПРОЦЕССЫ

Уильям Джеймс, американский психолог и философ, писал: «Наша наука – это капля, наше неведение - море».

Эти слова можно отнести и к познанию мира, и к познанию человека. Но и в том, и в другом познании участвуют познавательные процессы. Познавая мир, человек познает и себя. К познавательным процессам человека относятся:

  1. Ощущение – отражение свойств реальности, возникающее в результате воздействия их на органы чувств и возбуждения нервных центров головного мозга.

Восприятие – сложный процесс приема и преобразования информации, обеспечивающий отражение объективной реальности и ориентировку в окружающем мире.

  1. Мышление:
  • это высший познавательный процесс.
  • это движение идей, раскрывающее суть вещей. Его итогом является не образ, а некоторая мысль, идея, (понятие - обобщенное отражение класса предметов в их наиболее общих и существенных особенностях)
  • это особого рода теоретическая и практическая деятельность, предполагающая систему включенных в нее действий и операций ориентировочно - исследовательского, преобразовательного и познавательного характера.

Мышление - высшая ступень человеческого познания.

  1. Внимание – это способность человека сконцентрировать свои «познавательные процессы» да одном объекте с целью его изучения (познания).
  2. Память - это способность к воспроизведению прошлого опыта, одно из основных свойств нервной системы, выражающееся в способности длительно хранить информацию и многократно вводить ее в сферу сознания и поведения.
  3. Воображение – это особая форма человеческой психики, стоящая отдельно от остальных психических процессов и вместе с тем занимающая промежуточное положение между восприятием, мышлением и памятью
  4. Речь – это совокупность произносимых или воспринимаемых звуков, имеющих тот же смысл, и то же значение, что и соответствующая им система письменных знаков.

Через познавательные процессы человек приобретает не только знания, но и умение жить, работать, строить свою личную жизнь, участвовать в общественной жизни. Познавательные процессы являются основой познания человеком мира

В массовом сознании память до сих пор воспринимается как аналог жесткого диска, только менее точный и надежный. Эта аналогия в корне неверная. Почти по всем параметрам человеческая память принципиально отличается от машинной.

Осуществим их сравнение по нескольким показателям:

  • Энергонезависимость;
  • Объем памяти;
  • Пропускная способность интерфейсов;
  • Способ хранения данных,
  • Механизмы запоминания и воспроизведения информации,
  • Файловая система,
  • Необходимость в перерывах на обслуживание,
  • Надежность.

Энергонезависимость

Компьютерная память бывает как энергозависимой, так и энергонезависимой. Человеческая память бывает только энергозависимой. Остановка сердца вызывает смерть мозга и потерю данных уже через 6 минут.

Объем памяти

Точно измерить объем долговременной памяти человека крайне трудно, хотя попытки предпринимаются (некоторые расчеты показывают, что она измеряется сотнями терабайт). Скорее всего, наша память соизмерима с возможностями современной вычислительной техники.Кратковременную (оперативную) память измерить проще. Не гигабайтами, конечно, а по количеству объектов, которые человек способен удержать в памяти без повторения: всего семь, плюс-минус два. Компьютеры в этом плане ушли гораздо дальше.

 Что же касается количества одновременно запущенных процессов, то здесь дела еще хуже. В полной мере мы можем сосредоточиться только на одной задаче. Параллельные процессы могут выполняться лишь когда сознательные мыслительные усилия не требуются или требуются по минимуму (курить, слушать музыку, чесать ногу).

Стандарт обмена данными

Внутри компьютера обмен данными происходит в виде электрических сигналов.В мозге отдельные нейроны тоже оперируют электрическими сигналами, но для передачи данных по синапсам преобразуют их в менее эффективные химические соединения, что ведет к потере тепла и информации.

Пропускная способность интерфейсов

Пропускная способность компьютерных интерфейсов достигает десятков гигабайт в секунду.Человеческие нейроинтерфейсы измерить сложнее, но по существующим оценкам их возможности скромнее. Органы чувств способны принять до 11 Мбит/с, а вот осознанно человек усваивает не более 40 бит/с. Более того, большую часть времени наш осознанный информационный поток составляет всего 16 бит/с. 

Способ хранения данных

Вычислительные устройства хранят информацию на жестком диске или его аналогах. У человека воспоминания предельно атомизированы и фрагментированы по всему мозгу. Память о неприятных эмоциях хранится в миндалевидном теле, графика - в визуальной коре, звук - в слуховой коре и так далее.

Запоминание и воспроизведение информации

Первое : компьютеры воспроизводят информацию в точности так, как записано. Мозг в готовом виде ничего не хранит, он оперирует системой перекрестных ссылок. В момент активации воспоминания создаются специальные белки, с их помощью между нужными участками мозга устанавливаются связи и воспоминание оживает. Самая близкая аналогия - театральная постановка: сценарий каждый раз один и тот же, но могут быть различия в деталях. Второе : машинная память не зависит от контекста. Мозг же старается запоминать только самое главное (суть) и с привязкой к контексту. Чтобы запомнить и вспомнить, нам нужны ассоциации и желательно та обстановка, которая была на момент события. Это ускоряет доступ к часто используемым данным, но снижает скорость работы с памятью в целом.Существуют люди с феноменальной памятью, но они либо страдают от когнитивных расстройств, либо натренированы с помощью приемов мнемоники, то есть опять-таки умения использовать контекст.

Файловая система

Электроника точно знает, где что хранится благодаря файловой системе. В мозге же царит бардак. Файловой системы нет, а есть огромная свалка данных с наклеенными на них стикерами контекста: «день рождения», «поцелуй Юли», «укусила собака», «напился и прыгнул в реку, потом вскочил чирей», «впервые увидел игровой автомат». Компьютер обращается к своей памяти с конкретными запросами: кто, что, где, когда. Запрос к мозгу выглядит куда менее формально: «Есть что по теме?»

Перерывы на обслуживание

По одной из теорий сон нужен для консолидации памяти. Во время бодрствования постоянный поток информации ведет к росту синаптической проводимости в мозге, и со временем это делает работу мозга неэффективной. Сон снижает синаптическую проводимость до оптимального уровня.Компьютеры могут работать дольше, но и им нужны иногда перерывы - например, из-за утечек памяти. 

Надежность

В плане надежности обе системы примерно на равных. Вычислительные устройства хранят данные на жестком диске. В случае его неисправности данные пропадают, а компьютер выходит из строя. С другой стороны, содержимое жесткого диска можно продублировать с помощью RAID или настроить бэкапы.
Мозг менее надежный, но более гибкий. Человеческая память сама по себе организована не лучшим образом, а в случае травмы есть вероятность амнезии. Но память иногда возвращается, а человек может сохранить работоспособность и способность к запоминанию даже при очень тяжелых травмах головы и потере значительной части мозга.

ТАНДЕМ ЧЕЛОВЕКА И КОМПЬЮТЕРА: ЧТО БУДЕТ ДАЛЬШЕ

Все учёны однозначно отвечают, что нет, компьютер не может пока заменить человека. Они рассматривают только тандем (совместная с кем-либо деятельность) человека и компьютера.

За свое, относительно не долгое существование компьютер уже успел занять место во многих областях жизнедеятельности человека, он уже не заменим на работе, помогает детям в учёбе, и конечно же является одним из самых любимых развлечений для них. С появлением интернет он ещё и стал лучшим способом поиска информации, делового общения, отдыха и т.д. в общем, некоторым людям уже трудно представить жизнь без компьютера.

Компьютерные инновации и человеческий мозг – пожалуй, самый эффективный тандем для создания когнитивной революции. Чтение мыслей на расстоянии, управление техникой разумом, протезы, действующие по импульсу – когда-то подобные изобретения считались выдумкой фантастов. Но сейчас это уже не абстрактные представления, а конкретная наука, которая постепенно входит в повседневную жизнь. Что ждет нас в ближайшем будущем?

Когнитивный – дословно с латыни обозначает «познавательный». На практике когнитивная наука изучает восприятие мира человеком, его мысли, память и т.д. А значит, появляются устройства, учитывающие наше состояние и даже следящие за работой нашего мозга.

ИСКУССТВЕННЫЕ ОРГАНЫ ЧУВСТВ

Технологии способны заменить глаза, уши, носы и прочие органы. В лабораториях мира идет разработка зрительных протезов, которые сделают зрячими даже абсолютно слепых людей. При этом не нужно задействовать глаз и зрительный нерв - сигнал с миниатюрной камеры идет напрямую в кору головного мозга, куда вживляется специальный чип. На теоретическом уровне вся технология уже понятна и опробована на крысах и кошках. Сейчас речь идет уже о технических деталях.

Уже через несколько лет начнется массовое излечение слепых и глухих. А через несколько десятилетий вживленная электроника сможет стать чувствительнее, чем живые органы. А видеть можно будет не только впереди себя, но и сзади, сбоку и сверху.

МОЗГО-МАШИННЫЕ ИНТЕРФЕЙСЫ

Системы, позволяющие напрямую передавать сигналы от мозга к компьютеру, сегодня разрабатываются и на биофаке МГУ, и в Институте высшей нервной деятельности и нейрофизиологии РАН, и в ростовском НИИ нейрокибернетики. Разрабатываются системы и методы управления биообъектами (биороботами), в качестве которых выступают черепахи, кролики, дельфины. Несколько лет назад черепахе вживили электроды, установили ей на панцирь процессор, в итоге движениями животного можно было управлять с помощью джойстика.

Через два-три года в компьютерном супермаркете можно будут купить устройство, позволяющее играть в стрелялку-бродилку с помощью силы мысли. А рано или поздно станет доступно мысленное управление любыми устройствами, и такая мелочь, как компьютеры и мобильные телефоны, перекочуют из наших карманов прямиком в мозг, подсоединенный к Великой сети.

ИНТЕЛЛЕКТУАЛЬНЫЕ РОБОТЫ

Ученые и инженеры стараются сделать механические устройства все более и более похожими на человека не только внешне, но и интеллектуально. Создание роботов, которые бы умели шутить, сопереживать человеку, “понимать” и поддерживать его, - это исключительно привлекательная идея для современной цивилизации: именно такими роботы показаны в фантастических романах и кинофильмах. За основу берется эмоциональное поведение живых людей - их речь, интонации, мимика, поведение. Получившаяся модель алгоритмизируется и превращается в программный код. В результате на экране компьютера уже общаются рисованные человечки, способные и пошутить, и разозлиться.

По прогнозу компании TechCast, к 2022 году интеллектуальные роботы, чувствующие среду окружения, принимающие решения, обучаемые, будут использоваться в 30% домашних хозяйств и организаций.

КАК ТРЕНИРОВАТЬ ПАМЯТЬ И ВНИМАНИЕ

ПРИЧИНЫ «ДЕВИЧЬЕЙ» ПАМЯТИ

У людей с возрастом память становится хуже, появляется рассеянность, исчезает умение разумно рассуждать. Причин для появления таких недостатков много:

Заболевания (гипертония, атеросклероз, болезнь Альцгеймера, диабет),
- полнота,
- алкоголь, курение,
- плохой сон.

Но ум можно тренировать, как любые мышцы тела. Для этого разработаны специальные упражнения. Как же развить ум у взрослых людей? В первую очередь человеку надо бросить курить, пить алкоголь, иначе, хорошего результата придется долго ждать. Хотя табак имеет свойство - способствовать мгновенному повышению концентрации внимания, но это так кратковременно, что уповать на это не стоит.

Про алкоголь и говорить не будем, принимая спиртное нельзя сохранить глубокий ум. Даже небольшая его доза снижает умение быстро запоминать, также может вызвать срывы в мышлении.

Отрицательно влияют на способность запоминать успокаивающие, возбуждающие лекарства, обезболивающие, противовоспалительные препараты.

ПРИЕМЫ ДЛЯ СОХРАНЕНИЯ ПАМЯТИ

Почти все методики основываются на 3-х законах природы, способствующих запоминанию: эмоции, ассоциации и повторение. Для лучшего запоминания важны яркие впечатления. Именно этим законом пользовался Рузвельт, поэтому имел превосходную концентрацию внимания. Все, что читал, он запоминал практически дословно. Секрет кроется в том, что он полностью сосредотачивался на нужной ему информации.

Необыкновенными приемами пользовался Наполеон. Он спрашивал бойца, как пишется его фамилия, при этом получая яркое впечатление о человеке. Потом он мог сказать, где этот боец стоит при построении, как его зовут. Президент Линкольн читал вслух то, что надо было запомнить.

У Марка Твена тоже был свой прием запоминания довольно объемного текста. Он записывал несколько слов, с которых начинается абзац. Потом он начал рисовать то, что ему важно было оставить в своей голове.

С ЧЕГО НАЧАТЬ ТРЕНИРОВКУ

Есть такие упражнения для взрослых, которые помогут сконцентрироваться на главном.

1. Попробуйте 5-10 секунд сохранить ум, полностью свободный от мыслей. В это время избегайте любого напряжения: нервного или психического. Потом понемногу доведите до 30 секунд нахождения в таком состоянии. Как это сделать?

Попытайтесь сконцентрироваться и остановить движение картинок хотя бы на 10 сек.
Необходимо,
чтоб на протяжении 15 мин. ваша концентрация не прерывалась не на сек. т.е. картинка не должна пошевелиться.

2. Тренинг зрительной памяти. Постарайтесь зафиксировать облик идущего перед вами человека, потом вспомнить его во всех деталях. Можно попытаться представить, какая была вывеска у парикмахерской, причем, также, во всех подробностях.

3. Для улучшения звуковой памяти постоянно читайте вслух или учите с сыном или дочкой стихотворения.

4. В парфюмерном отделе понюхайте духи. Затем вспоминайте их название. Тренируйтесь с другими запахами.

5. Постарайтесь развить память на числа. Для начала посчитайте в уме сдачу в магазине, отгадайте цену каждого продукта. Считайте, сколько шагов вы сделаете от квартиры до выхода. Считайте все, что встречается на пути.

6. Повторяйте таблицу умножения.

ИГРАЙТЕ В ШАХМАТЫ

Для развития мышления подходят игры в шахматы, шашки, домино, игральные карты. Специалистами разработано много игр на развитие внимания, запоминания, мышления.

Сделайте эти упражнения на развитие памяти

Запоминанию поможет разгадывание кроссвордов, головоломок. А все виды рукоделия, типа вышивки, вязания, рисования, улучшают мелкую моторику, концентрацию на мелких деталях.

УПРАЖНЕНИЯ ДЛЯ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ ВНИМАНИЯ

1. Для активизации работы мозга. Проснувшись утром, сделайте такое упражнение:

Вращайте глазами в правую, потом в левую сторону, вверх, вниз в течение 30 секунд.
- касайтесь левым локтем правого колена и наоборот.
- если вы левша, то попробуйте что-нибудь написать левой рукой и наоборот,
- закройте глаза, постарайтесь представить свой ежедневник, включая сокращения, запятые, зачеркивания.
- возьмите ручки в каждую руку, нарисуйте на листке бумаги геометрические фигуры, например, правой рукой нарисуйте круг, а левой – квадрат, причем, рисуйте двумя руками одновременно. Уделяйте этому упражнению 30 секунд в день, чтобы оба полушария мозга начали слаженно работать.

2. Тренировка двигательной памяти. Поставьте фломастером точку на листке бумаги. Затем опустите руку, спустя 5 секунд, также с закрытыми глазами постарайтесь попасть фломастером в эту же точку. Потом рисуйте линии, идущие в разные стороны, далее по памяти повторите их снова.

3. Для запоминания имен, людей. Когда встретите человека, назовите его по имени, потом выделите у него самую интересную черту. Затем повторите: имя - образ, имя - образ. Прощаясь, снова произнесите его имя.

4. Память на цифры. Старайтесь запомнить все номера телефонов из вашей записной книжки. Для лучшего восприятия придумайте каждой цифре свой образ, например, 1- это спичка, 2- лебедь и т.д.

В этом простом задании вам нужно всего лишь найти мужскую голову среди зерен кофе. И засечь время, за которое вы справились с задачей.

До 3 секунд. Правое полушарие развито отлично. До 1 минуты - хорошо. 1-3 минуты говорит о том, что обязательно нужно работать над собой.

ПАМЯТЬ НИ ПРИ ЧЕМ

Вы лучше будете запоминать информацию, если будете тренировать внимание. Чтобы определить уровень вашего внимания, попробуйте описать предмет, мимо которого вы проходили много раз. Психологи говорят, чтобы повысить внимание, необходимо выполнять простые задания.

1. Положите на стол 10 разных предметов, посмотрите на них в течение 10 секунд, накройте их, например, газетой. Затем быстро перечислите, вспоминая все до одного. Не получилось? Пробуйте до тех пор, пока не научитесь концентрировать внимание.
2. Теперь расположите много предметов друг за другом. Если вы один, то можете даже записать, чтобы себя проверить. Закройте их, назовите по порядку.
3. Назовите цвет привычных вам предметов, находящихся в доме, не смотря на них.
4. Расположите в виде пирамидки 8 предметов, отвернитесь и по памяти назовите их сверху вниз и наоборот.

УЧИМСЯ СОСРЕДОТАЧИВАТЬСЯ

Отличный результат дает выполнение следующего задания. В любой книге найдите абзац, прочитайте, скажите, сколько вы нашли в нем букв «а», потом «в», затем, сколько в нем слов. Засекайте время, затраченное на выполнение этого задания. Работайте с текстом столько раз, пока не добьетесь наилучшего результата.

На рисунках изображены предметы. Тренируйтесь на время запоминать как можно больше предметов.

Хороший результат дает проговаривание вслух выполненного действия. Например, уходя из дома, вы часто думаете: а выключила ли я утюг? Сделайте так, выключая утюг, скажите: «Я выключила утюг», также можно проговаривать все действия.

УЛУЧШАЙТЕ СВОЮ СОСРЕДОТОЧЕННОСТЬ

Для этого разработаны различные техники. Вот некоторые из них.

1. Посмотрите в течение 3-5 секунд на какую-нибудь картинку. Назовите запомнившиеся детали или предметы.


Ключ: плохо, если запомнили только 5 предметов; хорошо от 5 до 9; отлично, если назвали больше 9 деталей.

2. Посмотрите на список и назовите ЦВЕТ каждого слова, главное назвать цвет, а не слово!

Уважаемые читатели, вы узнали много интересных тестов, упражнений, которые можно предложить, как игру, когда соберетесь небольшой компанией. Попробуйте, будет интересно!

ВЫВОД

Человек - один из видов животного царства с высокоразвитым мозгом, сложной социальной организацией и трудовой деятельностью, формирующими сознание и делающими малозаметными биологические первоосновы организма.

Человек - субъект общественно-исторического процесса, развития материальной и духовной культуры на Земле, биосоциальное существо, генетически связанное с другими формами жизни, но выделившееся из них благодаря способности производить орудия труда, обладающее членораздельной речью и сознанием, творческой активностью и нравственным самосознанием.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Энциклопедия для детей. Том 22. Информатика. М.: Аванта+, 2003.
  2. Энциклопедия для детей. Том 18. Человек. Ч. 1.Происхождение и природа человека. Как работает тело. Искусство быть здоровым. М.: Аванта+, 2001.
  3. Энциклопедия для детей. Том 18. Человек. Ч. 2. Архитектура души. Психология личности. Мир взаимоотношений. Психотерапия. М.: Аванта+, 2002.
  4. Данилова Н.Н. Психофизиология: Учебник для вузов.- М.: Аспект Пресс, 2001
  5. Марцинковская Т. Д. История психологии: Учеб. пособие для студ. высш. учеб. заведений.- М.: Издательский центр "Академия", 2001
  6. NewScientist.com news service; Angewandte Chemie International Edition (vol. 45, p. 1572)

>> Інформатика:Типова архітектура персонального комп"ютера. Класифікація та основні характеристики ПК.

Компьютер изнутри

1.Основные принципы
2.Персональный компьютер
3.Хранение целых чисел
4.Битовые операции
5.Вещественные числа

Тема 1. Основные принципы

Определения

Компьютер (computer) – это программируемое электронное устройство для обработки числовых и символьных данных.
аналоговые компьютеры – складывают и умножают аналоговые (непрерывные) сигналы
цифровые компьютеры – работают с цифровыми (дискретными) данными.
Hardware – аппаратное обеспечение, «железо».
Software программное обеспечение, «софт».

Программа – это последовательность команд, которые должен выполнить компьютер.

Команда – это описание операции (1…4 байта):

код команды
операнды – исходные данные (числа) или их адреса
результат (куда записать).

Типы команд:

безадресные (1 байт)
одноадресные (2 байта)
двухадресные (3 байта)
трехадресные (4 байта)

Структура памяти

Память состоит из нумерованных ячеек.

Линейная структура (адрес ячейки – одно число).
Байт – это наименьшая ячейка памяти, имеющая собственный адрес (4, 6, 7, 8, 12 бит).
На современных компьютерах 1 байт = 8 бит.

Архитектура компьютера

Архитектура
– принципы действия и взаимосвязи основных устройств компьютера (процессора, ОЗУ, внешних устройств).

Принстонская архитектура (фон Неймана):

Гарвардская архитектура – программы и данные хранятся в разных областях памяти.


Принципы фон Неймана

«Предварительный доклад о машине EDVAC» (1945)

1.Принцип двоичного кодирования:
вся информация кодируется в двоичном виде.
2. Принцип программного управления: программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
3. Принцип однородности памяти: программы и данные хранятся в одной и той же памяти.
4. Принцип адресности : память состоит из пронумерованных ячеек; процессору в любой момент времени доступна любая ячейка.

Выполнение программы

Счетчик команд (IP = Instruction Pointer) – регистр, в котором хранится адрес следующей команды.

1.Команда, расположенная по этому адресу, передается в УУ. Если это не команда перехода, регистр IP увеличивается на длину команды.
2.УУ расшифровывает адреса операндов.
3.Операнды загружаются в АЛУ.
4.УУ дает команду АЛУ на выполнение операции.
5.Результат записывается по нужному адресу.
6.Шаги 1-5 повторяются до получения команды «стоп».

Архитектуры компьютеров



Тема 2. Персональный компьютер

ПК – это компьютер, предназначенный для личного использования (доступная цена, размеры, характеристики).

Принцип открытой архитектуры

на материнской плате расположены только узлы, которые обрабатывают информацию (процессор и вспомогательные микросхемы, память)

схемы, управляющие другими устройствами (монитором и т.д.) – это отдельные платы, которые вставляются в слоты расширения

схема стыковки новых устройств с компьютером общедоступна (стандарт)

конкуренция, удешевление устройств

производители могут изготавливать новые совместимые устройства

пользователь может собирать ПК «из кубиков»

Взаимосвязь блоков ПК
Шина – многожильная линия связи, доступ к которой имеют несколько устройств.

Контроллер – электронная схема, управляющая внешним устройством по сигналам процессора.

Тема 3. Хранение целых чисел

Целые беззнаковые числа

Беззнаковые данные – не могут быть отрицательными.
Байт (символ)
память: 1 байт = 8 бит
диапазон значений 0…255, 0…FF 16 = 2 8 - 1

Си: unsigned char Паскаль: byte

Целые беззнаковые числа

Целое без знака
память: 2 байта = 16 бит диапазон значений 0…65535, 0…FFFF16 = 216-1
Си: unsigned int Паскаль: word

Длинное целое без знака
память: 4 байта = 32 бита диапазон значений 0…FFFFFFFF16 = 232-1
Си: unsigned long int Паскаль: dword

Целые числа со знаком

Сколько места требуется для хранения знака?

Старший (знаковый) бит числа определяет его знак. Если он равен 0, число положительное, если 1, то отрицательное.



Двоичный дополнительный код

Задача: представить отрицательное число (–a) в двоичном дополнительном коде.
Решение:
Перевести число a–1 в двоичную систему.
Записать результат в разрядную сетку с нужным числом разрядов.
Заменить все «0» на «1» и наоборот (инверсия).
Пример: (– a) = – 78, сетка 8 бит


Целые числа со знаком

Ошибки

Переполнение разрядной сетки: в результате сложения больших положительных чисел получается отрицательное (перенос в знаковый бит).
Перенос: при сложении больших (по модулю) отрицательных чисел получается положительное (перенос за границы разрядной сетки).


Тема 4. Битовые операции

Инверсия (операция НЕ)

Инверсия – это замена всех «0» на «1» и наоборот.

Операция И – обнуление битов

Маска: обнуляются все биты, которые в маске равны «0».
Задача: обнулить 1, 3 и 5 биты числа, оставив остальные без изменения.

Тема 5. Вещественные числа

Нормализация двоичных чисел

Нормализованные числа в памяти

Вещественные числа в памяти

Арифметические операции

Перейти до презентації можна клікнувши на текст "Презентація " і встановивши Microsoft PowerPoint

Надіслав викладач інформатики Манжула Анна Михайлівна.

Календарно-тематичне планування з інформатики, відео з інформатики онлайн , Інформатика в школі

Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Компьютер внутри насВыполнил Устюжанин Иван ВикторовичСпециальность 15.02.07«Автоматизация технологических процессов и производств» (по отраслям)Группа: 16 ТЭМ2-9 Цель работы: выяснить: что общего между компьютером и человеком? Выдвижение гипотезы: возможно, человек "списывал" компьютер с себя. Для достижения поставленной цели необходимо решить следующие задачи:Узнать, является ли мозг компьютером?Узнать, чем похожи человек и компьютер?Узнать, может люди созданы как компьютеры? Между компьютерами и нами есть много общего и это необходимо знать, т.к. нам в жизни приходится часто сталкиваться с компьютерами Наш внутренний компьютер (головной мозг) обрабатывает поступившие данные: анализирует, систематизирует, запоминает, сравнивает с ранее полученными сообщениями и уже имеющимся опытом. Мозг спинной – служит связующим звеном с вышестоящими отделами биологического компьютера. Исследование показало, что после ночного сна мозг человека «загружается», как операционная система при включении компьютера.Такая загрузка активирует отделы мозга, ответственные за выполнение сложных операций, а сигнал на ее начало подается в химическом виде. Утром в мозг поступает разная информация – от солнечного света до звуков будильника. Эта информация должна быть систематизирована и проанализирована мозгом. Только после первичного анализа мозг способен выполнять более сложные задачи.Отделы мозга, отвечающие за мышление, предоставляют нечто подобное набору шаблонов, при помощи которых обрабатывается поступающая информация. Блок питания преобразует электричество в удобную для восприятия системы форму. У человека это кислород и другие химические элементы, полученные путем газообмена в легких и процессами пищеварения в пищеварительной системе. Оперативная память хранит в себе текущую информацию, работает, пока на нее подается напряжение, имеет крайне ограниченный объем, относительно физической памяти. Человек решает текущие мелкие задачи, о которых мгновенно забывает, в памяти это хранится очень короткий промежуток времени, это временная (быстрая) память. Физическая память на компьютере в виде жесткого диска или флеш памяти имеет немалый объем. У человека существует такая же физическая память, только информация хранится в виде результата химической реакции и все же больше напоминает флеш память. Ведь если заряд на флешке полностью иссякнет, информация на ней будет утеряна, так же и у нас, если мы периодически не вспоминаем ее, она попросту стирается. Из данного проекта, мы узнали,что компьютер не умнее человека. Но какую-то часть своего ума и знаний человек сумел передать компьютеру, компьютер стал его верным помощником в самых разных делах и занятиях. Компьютер помогает врачу ставить диагноз и назначать лечение. Помогает художнику создавать картины и мультипликационные фильмы. Инженеры с помощью компьютера ведут сложные расчёты, составляют чертежи новых машин, космических кораблей. Спасибо за внимание

 


Читайте:



Налог на наследство по завещанию

Налог на наследство по завещанию

Рано или поздно с процедурой наследования имущества и завещания сталкивается каждый российский гражданин или гражданка. При вступлении в право...

Как пишется «несмотря на» или «не смотря на»?

Как пишется «несмотря на» или «не смотря на»?

«Несмотря на» в самой употребимой форме (в качестве предлога) пишется в два слова. Семантика Означает “не обращая внимания на кого-что-нибудь”....

Два замечательных рецепта приготовления курицы с чесноком в духовке

Два замечательных рецепта приготовления курицы с чесноком в духовке

Какими бы ни были у нас вкусовые предпочтения, рано или поздно перед каждой хозяйкой встает вопрос, как приготовить курицу в духовке. Особенно этот...

Как приготовить салат из печени трески с зеленым горошком

Как приготовить салат из печени трески с зеленым горошком

Подготовим все необходимые ингредиенты. Открываем банку с печенью трески и отделяем ее от масла. Нарезаем печень кусочками или просто немного мнем...

feed-image RSS