Главная - Отопление
Схему эффективный импульсный стабилизатор напряжения. Линейный стабилизатор напряжения или тока LM317

Рассматриваемая сегодня микросхема - это регулируемый DC-DC преобразователь напряжения, или просто понижающий регулируемый стабилизатор тока 40 вольт на входе и от 1,2 до 35 В на выходе. LM2576 требует входное питание около 40-50 в постоянного тока. Так как она может держать токи до 3-х ампер, LM2576 работает как импульсный стабилизатор, способный управлять нагрузкой 3 А с минимальным количеством компонентов и небольшим радиатором. Цена микросхемы LM2576 составляет примерно 140 рублей.

Принципиальная схема стабилизатора


Особенности схемы

  • Выходное регулируемое напряжение 1,2 - 35 В и низкий уровень пульсаций
  • Потенциометр для плавной регулировки выходного напряжения
  • На плате есть мостовой выпрямитель напряжения переменного тока
  • Светодиодная индикация входного питания
  • Размеры печатной платы 70 х 63 мм


Предназначена схема для настольных блоках питания, зарядных устройств для батарей, как светодиодный драйвер. Далее 2 варианта исполнения - в стандартном и планарном виде:



Почему в таких источниках стабилизированного питания нельзя применять простые параметрические стабилизаторы типа LM317? Потому что рассеиваемая мощность на напряжении 30 В 3 А будет несколько десятков ватт - потребуется огромный радиатор и кулер. А вот при импульсной стабилизации выделяемая на микросхеме мощность почти в 10 раз меньше. Поэтому с LM2576 получаем небольшой и мощный, универсальный регулируемый стабилизатор напряжения.

Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием "5A Lithium Charger CV CC Buck Step Down Power Module LED Driver ". Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.

Чертёж печатной платы представлен на рис. 2.

Согласно спецификации изготовителя модуль имеет следующие технические характеристики:

  • Входное напряжение 6-38 В постоянного тока.
  • Выходное напряжение регулируемое 1.25-36 В постоянного тока.
  • Выходной ток 0-5 А (регулируемый).
  • Мощность в нагрузке до 75 ВА.
  • КПД более 96%.
  • Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
  • Размеры модуля 61.7х26.2х15 мм.
  • Масса 20 грамм.

Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.

Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.

Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.

На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.

Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.

Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.

Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор

LM317L

1 В блокнот
DA2 Микросхема XL4015 1 В блокнот
DA3 Операционный усилитель

LM358

1 В блокнот
VD1 Диод Шоттки

SK54

1 В блокнот
HL1 Светодиод Зеленый 1 В блокнот
HL2 Светодиод Красный 1 В блокнот
HL3 Светодиод Синий 1 В блокнот
С1, С6 Электролитический конденсатор 220 мкФ 50 В 2 В блокнот
С2-С4, С7 Конденсатор 0.47 мкФ 4 В блокнот
С5 Конденсатор 0.01 мкФ 1 В блокнот
R1 Резистор

680 Ом

1 В блокнот
R2 Резистор

220 Ом

1 В блокнот
R3 Резистор

330 Ом

1 В блокнот
R4 Резистор

18 кОм

1 В блокнот
R7 Резистор

100 кОм

1 В блокнот
R8 Резистор

10 кОм

1

Импульсные стабилизаторы напряжения в последнее время становятся достаточно популярными благодаря компактным размерам и сравнительно высокому КПД и ближайшем будущем они полностью вытеснят старые и добрые аналоговые схемы.
Сейчас за пару долларов в Китае можно приобрести готовый модуль DC-DC преобразователя, который обеспечивает регулировку выходного напряжения, имеет возможность ограничивать ток и работает в довольно широком диапазоне входных напряжений.

Наиболее популярная микросхема, на которой строятся такие стабилизаторы – LM2596. Максимальное напряжение до 35 вольт, при токе до 3-х ампер. Работает микросхема в импульсном режиме, нагрев на ней не очень сильный при довольно внушительных нагрузках, компактна и стоит копейки.

Добавлением ОУ можно получить и ограничение выходного тока, скажу больше – стабилизацию тока, иными словами – ток будет держаться на уровне заданного не зависимо от напряжения.
Такие модули довольно компактны и можно встроить в любую самодельную конструкцию блока питания и зарядного устройства. Подключив на выход цифровой вольтметр мы будем знать какое напряжение на выходе. .

На самой плате имеются подстроечные резисторы для ограничения выходного тока и регулировки напряжения. Диапазон входного напряжения позволит внедрять такой модуль в автомобиль, напрямую подключив к бортовой сети 12 Вольт. Что это нам даст?

  1. 1) Универсальное зарядное устройство с большим током. Можно заряжать любые смартфоны, планшеты, плееры и прочие проигрыватели, навигаторы и портативные охранные системы, притом к устройству можно подключать скажем 2-3 смартфона одновременно и все они будут одинаково хорошо заряжаться.

  2. 2) Подключите устройство скажем к адаптеру ноутбука, выставьте на выходе 14-15 Вольт и смело заряжайте аккумулятор! 3 ампера довольно немалый ток для зарядки автомобильного аккумулятора, правда саму плату преобразователя придется установить на небольшой радиатор.

С полезностью платы однозначно нельзя поспорить, да и стоит копейки (не более 2-3 долларов США). Эту же плату можно изготовить в домашних условиях, при наличии определенных компонентов, правда готовый модуль стоит куда дешевле, чем отдельные компоненты.

Сдвоенный операционный усилитель, на первом элементе оу построен узел ограничения тока, на втором – индикация. Сама микросхема с обвязкой, силовой дроссель, который может быть намотан самостоятельно и пара регуляторов. Схема почти не перегревается при малых токах – но маленький теплоотвод не помешает.

Приставка к блоку питания

Это преобразователь задумывался, как приставка, позволяющая расширить диапазон напряжений лабораторного блока питания, рассчитанного на выходное напряжение 12 вольт и ток 5 ампер. Принципиальная схема преобразователя показана на рисунке 1.

Основой устройства является микросхема однотактного широтно-импульсного контроллера UC3843N, включенная по типовой схеме. Непосредственно эта схема бала заимствована у немецкого радиолюбителя Георга Тиф (Tief G. Dreifacher Step-Up-Wandler. Stabile Spennunger fϋr den FieldDay). Данные на русском языке на эту микросхему можно посмотреть в справочнике «Микросхемы для импульсных источников питания и их применение» издательства «Додэка» на странице 103. Схема не сложная и при исправных деталях и правильном монтаже, начинает работать сразу же. Регулировка выходного напряжения преобразователя осуществляется при помощи подстроечного резистора R8. Но при желании, его можно поменять на резистор переменный. Величину выходного напряжения можно изменять от 15 до 40 вольт, при номиналах резисторов R8, R9, R10, указанных на схеме. Данный преобразователь был испытан с паяльником, рассчитанным на 24 вольта и мощностью 40 Вт.
И так:

Напряжение выхода ……………… 24 В
Ток нагрузки составил ……....... 1,68 А
Мощность нагрузки ………………. 40,488 Вт
Напряжение входа ………………... 10,2 В
Общий ток потребления ………. 4,65 А
Общая мощность …………………... 47,43 Вт
Получившийся КПД ………………... 85%
При этом температура активных компонентов схемы была в районе 50 градусов.

При этом ключевой транзистор и диод с барьером Шоттки имеют небольшие радиаторы. В качестве ключевого транзистора применен транзистор IRFZ34, имеющий сопротивление открытого канала 0,044 Ом, а в качестве диода применен один из диодов диодной сборки S20C40C, выпаянной из блока питания старого компьютера. На печатной плате предусмотрена коммутация диодов при помощи перемычки. Можно применить и другие диоды с барьером Шоттки с прямым током не менее чем в два раза превышающим ток нагрузки. Дроссель намотан на желтом с белым кольце из распыленного железа, так же взятым из блока питания ПК. Про такие сердечники можете почитать в брошюре Джима Кокса. Скачать ее можно из Сети. Вообще советую скачать эту статью и полностью прочитать. Много полезного материала по дросселям.

Магнитная проницаемость такого кольца равна 75, а его размеры – D = 26,9 mm; d = 14,5 mm; h = 11,1 mm. Обмотка дросселя имеет 24 витка любого обмоточного провода диаметром 1,5 мм.

Все детали стабилизатора установлены на печатной плате, причем с одной стороны установлены все «высокие» детали, а с другой – все, так сказать, «низкорослые». Рисунок печатной платы показан на рисунке 2.

Первое включение собранного устройства можно производить без ключевого транзистора и убедиться в работоспособности ШИМ-контроллера. При этом на выводе 8 микросхемы должно быть напряжение 5 вольт, это напряжение внутреннего источника опорного напряжения ИОН. Оно должно быть стабильны при изменении напряжения питания микросхемы. Стабильной должна быть и частота, и амплитуда пилообразного напряжения на выходе 4 DA1. Убедившись в работоспособности контроллера можно впаять и мощный транзистор. Все должно работать.

Не забывайте, что ток нагрузи стабилизатора, должен быть меньше тока, на который рассчитан ваш блок питания и его величина зависит от выходного напряжения стабилизатора. Без нагрузки на выходе стабилизатор потребляет ток примерно равный 0,08 А. Частота импульсной последовательности управляющих импульсов без нагрузки, находится в районе 38 кГц. И еще немного, если будете рисовать печатную плату сами, ознакомьтесь с правилами монтажа микросхемы по ее документации. Стабильная и безотказная работа импульсных устройств зависит не только от качественных деталей, но и в правильной разводке проводников печатной платы. Успехов. К.В.Ю.

Здравствуйте. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения (или тока) LM317 по цене 18 центов за штуку. В местном магазине такой стабилизатор стоит на порядок больше, поэтому меня и заинтересовал этот лот. Решил проверить, что продаётся по такой цене и оказалось, что стабилизатор вполне качественный, но об этом ниже.
В обзоре тестирование в режиме стабилизатора напряжения и тока, а также проверка защиты от перегрева.
Заинтересовавшихся прошу…

Немного теории:

Стабилизаторы бывают линейные и импульсные .
Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin - Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади.
Преимущество линейного стабилизатора - простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток - низкий КПД, большое тепловыделение.
Импульсный стабилизатор напряжения - это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения - с минимальным сопротивлением, а значит, может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.
Преимущество импульсного стабилизатора - высокий КПД, низкое тепловыделение.
Недостаток - бОльшее количество элементов, наличие помех.

Герой обзора:

Лот состоит из 10 микросхем в корпусе ТО-220. Стабилизаторы пришли в полиэтиленовом пакете, обмотанным вспененным полиэтиленом.






Сравнение с наверно самым известным линейным стабилизатором 7805 на 5 вольт в таком же корпусе.

Тестирование:
Подобные стабилизаторы выпускаются многими производителями, вот .
Расположение ножек следующее:
1 - регулировка;
2 - выход;
3 - вход.
Собираем простейший стабилизатор напряжения по схеме из руководства:


Вот что удалось получить при 3 положениях переменного резистора:
Результаты, прямо скажем так, не очень. Стабилизатором это назвать язык не поворачивается.
Далее я нагрузил стабилизатор 25 Омным резистором и картина полностью преобразилась:

Далее я решил проверить зависимость выходного напряжения от тока нагрузки, для чего задал входное напряжения 15В, подстроечным резистором выставил выходное напряжение около 5В, и выход нагрузил переменным 100 Омным проволочным резистором. Вот что получилось:
Ток более 0,8А получить не удалось, т.к. начало падать входное напряжение (БП слабый). В результате этого тестирования, стабилизатор с радиатором нагрелся до 65 градусов:

Для проверки работы стабилизатора тока, была собрана следующая схема:


Вместо переменного резистора я использовал постоянный, вот результаты тестирования:
Стабилизация по току тоже хорошая.
Ну и как обзор может быть без сжигания героя? Для этого я собрал снова стабилизатор напряжения, на вход подал 15В, выход настроил на 5В, т.е. на стабилизаторе упало 10В, и нагрузил на 0,8А, т.е. на стабилизаторе выделялось 8Вт мощности. Радиатор убрал.
Результат продемонстрировал на следующем видео:


Да, защита от перегрева тоже работает, сжечь стабилизатор не удалось.

Итог:

Стабилизатор вполне работоспособен и может быть использован как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также есть множество различных схем применения для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и др. Стоимость сабжа вполне приемлемая, учитывая, что в оффлайне я могу купить такой минимум за 30 рублей, а в за 19 рублей, что существенно дороже обозреваемого.

На сём разрешите откланяться, удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +37 Добавить в избранное Обзор понравился +59 +88
 


Читайте:



Налог на наследство по завещанию

Налог на наследство по завещанию

Рано или поздно с процедурой наследования имущества и завещания сталкивается каждый российский гражданин или гражданка. При вступлении в право...

Как пишется «несмотря на» или «не смотря на»?

Как пишется «несмотря на» или «не смотря на»?

«Несмотря на» в самой употребимой форме (в качестве предлога) пишется в два слова. Семантика Означает “не обращая внимания на кого-что-нибудь”....

Два замечательных рецепта приготовления курицы с чесноком в духовке

Два замечательных рецепта приготовления курицы с чесноком в духовке

Какими бы ни были у нас вкусовые предпочтения, рано или поздно перед каждой хозяйкой встает вопрос, как приготовить курицу в духовке. Особенно этот...

Как приготовить салат из печени трески с зеленым горошком

Как приготовить салат из печени трески с зеленым горошком

Подготовим все необходимые ингредиенты. Открываем банку с печенью трески и отделяем ее от масла. Нарезаем печень кусочками или просто немного мнем...

feed-image RSS