Главная - Отопление
Защита от статического электричества в быту и на производстве. Что такое статическое электричество

Существование человека в конкретной среде связывается с воздействием на него (и на окружающие условия) электромагнитных полей. Какой можно сделать вывод в случае наличия неподвижных зарядов? Значит, речь идет об электростатических полях.

Главная опасность

В данном случае нервная система людей испытывает большую нагрузку. Это обусловлено тем, что электрические поля от избыточного количества зарядов воздействуют на тело, одежду и предметы. Сердечно-сосудистая система организма также реагирует на данные явления.

Основная информация

Что представляет собой статическое электричество? Оно возникает тогда, когда происходит нарушение внутримолекулярного или атомного равновесия. Это обусловлено потерей или приобретением электрона. В норме для атома характерно равновесное состояние. Это объясняется одинаковым числом отрицательных и положительных частиц. Речь идет об электронах и протонах. Первые легко перемещаются от одних атомов к другим. При этом происходит формирование отрицательных и положительных ионов. Таким образом, статическое электричество возникает тогда, когда происходит подобный дисбаланс.

Главные причины появления

Статическое электричество может возникнуть под воздействием ряда факторов, среди которых можно выделить следующие:


Подробнее об опасностях

Электризация различных материалов может представлять угрозу для людей. В связи с этим правила защиты от статического электричества требуется знать каждому. Главная опасность заключается в возможности возникновения искрового разряда. Это относится как к изолированному проводящему объекту, так и к наэлектризованной поверхности.

Возможность возникновения разряда

Это происходит тогда, когда напряженность соответствующего поля над поверхностью проводника или диэлектрика (что обусловлено накоплением зарядов на них) достигло критической величины. Последнюю иногда называют пробивной. Данная величина для воздуха составляет приблизительно 30 кВ/м.

Другие опасности

Из-за искровых разрядов может произойти возгорание горючих смесей. Это случится тогда, когда выделяющаяся энергия будет больше той, которая поспособствовала началу пожара. Также существует общее значение. Эта энергия должна быть выше минимального аналогичного параметра зажигания горючей смеси.

Возможные последствия

Зачем нужно знать основные правила защиты от статического электричества? В некоторых случаях от его воздействия могут возникнуть нежелательные нервные и болевые ощущения. Иногда это приводит к непроизвольному резкому движению человека. В результате он может получить какую-либо механическую травму. В данном случае большую роль играет собственное статическое электричество человека.

Особенности контроля

Существует соответствующий ГОСТ. Статическое электричество действительно может быть крайне опасным. Для снижения рисков установлены допускаемые уровни напряженности соответствующих полей. Все это должно жестко контролироваться на рабочих местах. Также необходимо соблюдать санитарно-гигиенические нормы. Данные требования распространяются на поля, которые возникают из-за электризации определенных материалов, а также во время использования установок. В последнем случае подразумевается высокое напряжение постоянного тока. Их соблюдение - основная защита от статического электричества. ГОСТ определяет допускаемые уровни напряженности на рабочих местах. Также там прописаны общие требования к защитным средствам и осуществлению контроля. Что касается допустимых уровней напряженности электрических полей, то они устанавливаются с учетом времени пребывания сотрудников на рабочих местах.

Выбор подходящих средств

Защита от статического электричества может быть организована различными способами. Прежде всего нужно принимать во внимание следующее:

  1. Особенности технологических процессов.
  2. Микроклимат помещений.
  3. Физико-химические свойства обрабатываемых материалов.

Таким образом, разрабатывается подход к организации мероприятий по безопасности. Снятие статического электричества может быть реализовано несколькими путями:

  1. Устранением образовавшихся зарядов.
  2. Уменьшением их интенсивности.

Что касается последнего случая, то ответ на вопрос о том, как снять статическое электричество, заключается в следующем: это достигается благодаря снижению силы и скорости трения, повышению проводимости материалов и различиям в их соответствующих свойствах. Далее следуют практические рекомендации:


Самые действенные методы

Заряды могут образоваться в процессе разбрызгивания, распыления и расплескивания определенных жидкостей. Идеально, когда такие явления будут устранены совсем. Если такой возможности нет, то нужно хотя бы максимально их ограничить. К примеру, при наполнении резервуаров диэлектрическими жидкостями использовать свободно падающую струю нельзя. В этом случае сливной шланг направляется вдоль стенки для того, чтобы избежать брызг. Идеально, если есть возможность опустить его под уровень жидкости. Чем меньше электропроводимость материалов, тем выше интенсивность образования зарядов. Таким образом, желательно повышать ранее указанный параметр имеющихся элементов. Это можно сделать с помощью введения антистатических присосок. Соответственно, для покрытия полов должен использоваться специальный линолеум. Проведение периодической антистатической обработки ковров очень желательно. Это также относится и к синтетическим тканям. Желательно, чтобы соприкасающиеся вещества и предметы были изготовлены из аналогичных материалов. В этом случае контактная электризация также исключена. К примеру, полиэтиленовый порошок должен храниться в бочках из аналогичных материалов. Транспортировать и пересыпать его лучше только с использованием соответствующего трубопровода и шланга. В некоторых случаях осуществить это невозможно. Тогда допустимо применение материалов, которые близки по диэлектрическим свойствам. Итак, можно сделать небольшой вывод о том, что для защиты от статического электричества необходимо применение слабо- или неэлектризующихся материалов. Также нужно стремиться к устранению следующих явлений в работе с диэлетрическими жидкостями:

  1. Плескания.
  2. Разбрызгивания.
  3. Распыления.
  4. Трения.

Если возможности полного устранения нет, то нужно хотя бы максимально ограничить их.

Дополнительные способы

Влажный воздух обладает достаточной проводимостью для того, чтобы образующиеся заряды могли стекать через него. Таким образом, в соответствующей среде они практически не возникают. Исходя из этого увлажнение воздуха - самый распространенный и наиболее простой способ борьбы со статическим электричеством. Также существуют и другие методы обеспечения безопасности. Речь идет об ионизации воздуха. Она также является распространенным методом борьбы с электрическими зарядами. Дело в том, что ионы способствуют их нейтрализации. Они вырабатываются специальным прибором. Бытовой ионизатор имеет массу преимуществ. Прежде всего, он способствует улучшению аэроионного состава воздушной среды помещения. При этом устраняются электрические заряды, которые возникают на одежде, синтетических покрытиях и коврах. Что касается производства, то там используются мощнейшие ионизаторы. Встречаются различные конструкции. Однако электрические ионизаторы наиболее распространены.

Статическое напряжение приносит пользу, а иногда и неприятности. Попробуем разобраться почему. На дружеской вечеринке смешайте в чашке ложку соли и щепотку перца. Попросите друзей разделить смесь на составляющие. После бесполезных попыток продемонстрируйте им небольшой эксперимент. Расчешите волосы пластиковой расческой, а затем дотроньтесь ею до содержимого чашки. Частицы перца сами выскочат из емкости. В основе этого забавного опыта лежит интересное явление статического электричества.

Под словом «электричество» ученые подразумевают взаимодействие электрических зарядов. Их движение упорядочено, чтобы люди могли пользоваться разнообразными приборами и механизмами: от чайника до троллейбуса. Статическое электричество не спешит запускать в работу холодильник или мобильный телефон. Оно находится в состоянии релаксации. То есть, свободный заряд сохраняется, пока не возникнут условия для движения. Это довольно просто: представьте пожарного, который ждет сообщения о возгорании жилого дома.

Как открыли статическое электричество

Примерно восемь тысяч лет назад наши предки приручили диких коз и овец. Они заметили, что изделия из шерсти обладают необычной способностью накапливать заряд. Впервые понятие о статическом электричестве пытался сформулировать древнегреческий математик Фалес. Для своих опытов он использовал янтарь. Камень притягивает мелкие легкие частицы, если натереть его шерстяной тканью. Тогда из этого явления не смогли извлечь пользу. Электрон по-гречески янтарь. В честь него гораздо позже назвали элементарную частицу с отрицательным зарядом.

Спустя две тысячи лет придворный врач английской королевы Уильям Гилберт описывает, что такое статическое электричество. В своём научном труде по физике он подчеркивает родственную природу электричества и явления магнетизма. Исследования британца стали началом для подробного изучения темы среди коллег в Европе. Более четкое понятие о статическом электричестве дал опыт Отто фон Герике. Немец собрал первый электростатический механизм. Это был шар из серы на железном стержне. В результате ученый узнал, что предметы под воздействием электричества могут не только притягиваться, но и отталкиваться друг от друга.

Немного науки

Сегодня причины возникновения статического электричества хорошо изучены. Это явление наблюдается на поверхностях некоторых предметов в результате взаимодействия с другими материалами. Сила заряда и его способность сохраняться зависят от их свойств и состава. Самый простой пример взаимодействия тел – трение. Чем интенсивнее и быстрее девушка расчёсывает волосы, тем сильнее образуется заряд. Статическое электричество окружает людей повсюду, но они замечают его не всегда. Электростатические заряды образуются в солнечную погоду при передвижении на автомобиле. Они накапливаются от напряжения, которое возникает между асфальтом и кузовом. Если водитель не использует антистатик, это приведет к искре.

Опасность статического электричества

Большинство явлений статического электричества в повседневной жизни человек просто не замечает. Незначительные неприятности могут возникнуть при использовании одежды из шерсти или синтетики. Величины токов в этом случае очень небольшие и не оставляют травм. На бытовом уровне это вполне безопасно. Сложности появляются, когда речь заходит о промышленном производстве, предприятиях перерабатывающей отрасли или машиностроения. В больших количествах электростатические заряды присутствуют на производстве. Станки, сепараторы, ленты транспортера могут обладать значительным потенциалом.

Если таких факторов много, образуется электрическое поле с высокими показателями напряженности. В этой обстановке находится не только некомфортно, но и опасно для здоровья. Главная причина для беспокойства в условиях опасного производства — пожарная опасность статического напряжения. На поверхности оборудования или одежды может накопиться большой заряд. Речь идет о работе с легковоспламеняющимися жидкостями, горючими газами и взрывоопасными смесями. Искра может стать причиной серьезной аварии.

Защита от статического электричества

Чтобы избежать неблагоприятного воздействия этого явления, разработан государственный стандарт показателя напряженности электростатических полей. Его максимально допустимый уровень 60 кВ/м в час. Они могут изменяться от времени нахождения рабочего в опасном помещении. Измерить уровень заряда статического электричества – задача для профессионала. Ключевым показателем является зависимость сопротивления поля (его способность препятствовать прохождению тока) и его напряженности (отношение силы поля к величине заряда). На этом основывается работа измерительных приборов.

Влияние статического электричества на организм человека может быть губительным и вызывает различные заболевания, в том числе психические. Если говорить о производственной безопасности в целом, основных способов борьбы два:

  1. Снижение возможности образования электростатических зарядов.
  2. Устранение накопления электростатических зарядов.

Чтобы уменьшить трение – детали оборудования шлифуют и смазывают. Для изготовления механизмов применяются одинаковые материалы. Избавиться от зарядов можно с помощью заземления станков.

Статическое электричество может сыграть злую шутку при распылении или разбрызгивании жидкостей с низкими показателями проводимости тока. Это чревато их воспламенением.

Проблема решается использование специальной тары и условиями обработки. К индивидуальным средствам защиты от статического напряжения можно отнести несколько наименований:

  1. Специальная одежда (штаны и куртка).
  2. Обувь с подошвой, обеспечивающей изоляцию.
  3. Перчатки.
  4. Браслеты для снятия диэлектрического напряжения.

Нет худа без добра

Статическое электричество приносит не только вред, но и пользу. С развитием технологий, люди приручили статическое напряжение и научились извлекать из него выгоду. Так явление успешно используется при ламининации пиломатериалов, в бумажной промышленности. Накопленный заряд помогает при изготовлении и нанесении этикеток и при качественной порошковой покраске автомобилей.

Статическое электричество – это совокупность явлений, приводящих к тому, что нейтральные тела, не проявляющие в обычных условиях электрических свойств, в условиях контакта или взаимодействия становятся электрически заряженными.

Для образования и накопления зарядов необходим контакт двух фаз с образованием двойного электрического слоя. При этом у поверхности раздела фаз на одной из них концентрируется положительный заряд, а на другой отрицательный, что приводит к искровому разряду. Такое распределение зарядов может наблюдаться на границе:

металл – металл, металл – газ, металл – диэлектрик, жидкость – металл и т.д..

При статическом электричестве напряжение относительно земли достигает десятков, а иногда сотен тысяч вольт, однако сила тока – основной поражающий фактор, составляет доли миллиампера, что безопасно для человека. Опасность при действии статического электричества на человека представляет кратковременный разряд проходящий через его тело. Такой разряд вызывает у человека рефлекторное движение (резкое убирание, например, руки), что в производственных условиях может закончиться несчастным случаем.

Кроме того при статическом электричестве, как правило, образуется искровой разряд. Образующаяся искра может служить причиной воспламенения: горючих газов, взрывчатых смесей, паров или пыли с воздухом.

Для защиты от действия статического электричества используются следующие методы: заземление, увлажнение, подбор контактных пар.

4.3. Методы и средства обеспечения электробезопасности

Поражение человека электрическим током возможно только при прохождении электрического тока через тело человека. Это может произойти при:

§ однофазном включении в цепь – при контакте с проводами,

клеммами, шинами и т.д. (рис. 1);

§ при контакте человека с нетоковедущими частями оборудования (корпус станка, прибора), конструктивными элементами здания, оказавшимися под напряжением в результате нарушения изоляции проводки и токоведущих частей.

Для защиты человека от поражения электрическим током необходимо

использовать:

защитное ограждение;

– заземление и зануление;

– безопасные напряжения;

– предупредительные плакаты и знаки, вывешиваемые у опасных мест;

– изолирующие электрозащитные средства;

– индивидуальные средства защиты.

Защитное заземление – преднамеренное электрическое соединение с землей или её эквивалентом (заземлителем) металлических нетоковедущих частей (корпуса), которые могут оказаться под напряжением. В случае замыкания на корпус одной из фаз и прикосновения к нему человека, ток пойдет в основном в заземлитель, а не в тело человека, т.к. сопротивление человека 1000 Ом, а заземлителя – 4 – 10 Ом.

Зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей (корпуса), которые могут оказаться под напряжением.

Безопасные напряжения – это напряжения не более 42 В. На производстве для повышения безопасности применяют напряжение 12 и 36 В. в При этом в особо опасных и помещениях с повышенной опасностью ручной электроинструмент питается напряжением 36 В, а ручные электролампы – 12 В. Однако в таких помещениях эти напряжения не обеспечивают полной безопасности, а лишь существенно снижают опасность поражения электрическим током. В практике считают безопасными следующие напряжения: в сухих помещениях - 42В, в сырых – 12В.

Плакаты и знаки безопасности применяются для предотвращения ошибочного включения электроустановок, а также для предупреждения об опасности при приближении к токоведущим частям, находящимся под напряжением. Они делятся на: предупреждающие, запрещающие, предписывающие и указательные.

Наибольшую группу среди электрозащитных средств составляют изолирующие. Эти средства подразделяются на основные и дополнительные. Основные изолирующие электрозащитные средства длительно выдерживают рабочее напряжение электроустановок и позволяют работать на токоведущих частях, находящихся под напряжением. Дополнительные изолирующие электрозащитные средства сами по себе не могут обеспечить защиту от поражения током, но дополняют основные, а также служат для защиты от напряжения прикосновения и шагового напряжения.

К основным электрозащитным средствам, применяемым в электроустановках до 1000 В, относятся: изолирующие клещи, указатели напряжения, электроизмерительные клещи, диэлектрические перчатки, ручной изолирующий инструмент.

К дополнительным изолирующим электрозащитным средствам в электроустановках до 1000 В относятся: диэлектрические галоши, диэлектрические коврики, лестницы приставные.

К индивидуальным средствам защиты , применяемым в электроустановках, относятся: средства защиты головы (каски защитные); средства защиты глаз и лица (очки и щитки защитные); средства защиты органов дыхания (противогазы, респираторы); средства защиты рук (рукавицы); средства защиты от падения с высоты (пояса предохранительные и канаты страховочные); одежда специальная защитная (комплект для защиты от электрической дуги).

Раздел 5. - Вредные вещества

Общие вопросы

Вредные вещества (В.в.) – это вещества, которые при контакте с организмом человека, в случае нарушения требований безопасности, могут вызвать: профессиональные заболевания, отклонения в состоянии здоровья или производственные травмы, обнаруживаемые современными методами исследований, как в процессе работы, так и в отдаленные сроки жизни настоящего и последующих поколений.

Основными источниками вредных веществ являются: ТЭЦ (выбрасывают в атмосферу 20 – 30 % вредных веществ); автотранспорт (выбрасывают в атмосферу 40 – 50 % вредных веществ); промышленные предприятия (выбрасывают в атмосферу 40 – 20 % вредных веществ).

Пути посту вредных веществ в организм человека следующие: через органы дыхания (95 %), пищеварительный тракт, кожу, слизистые оболочки.

Вредные вещества поступают в организм человека в результате: одноразового воздействия высоких концентраций при авариях, поломках оборудования, что ведет в конечном итоге к сильным отравлениям; либо при воздействии малых доз В.в., но длительное время, что приводит к их накоплению в организме человека, и, соответственно, к профессиональным заболеваниям.

5.2. Классификация вредных веществ по области образования и применения

В зависимости от области образования и применения В,в. подразделяются на: промышленные яды, ядохимикаты, бытовые химикаты, биологические и растительные яды, отравляющие вещества.

Промышленные яды - В.в., образующиеся и использующиеся в промышленности (органические растворители, топливо, красители, лаки, краски и т,д,). Особую опасность в этой группе представляют тяжелые металл.

К тяжелым относятся металлы с большим удельным весом (плотность более

8 г /см 3): кобальт, никель, медь, висмут, свинец, ртуть и т. д. Поступление тяжелых металлов в биосферу происходит в результате: выбросов при высокотемпературных процессах в черной и цветной металлургии, обжиге цемента, сжигании минерального топлива, выноса их из отвалов металлургических предприятий водными и воздушными потоками.

Опасность тяжелых металлов обусловлена: их устойчивостью во внешней среде, хорошей растворимостью в воде, сорбцией (поглощением) почвой и растениями, что в совокупности приводит к их накоплению в среде обитания человека.

Тяжелые металлы при их действии на человека вызывают следующие заболевания: системы кровообращения, нервной системы, сердечно – сосудистой системы, печени, желудочно – кишечного тракта.

Бытовая химия – к ним относятся все средства санитарии: стиральные порошки, моющие и чистящие средства, в том числе и для мытья посуды.

Как заявляют специалисты, основу опасность любого моющего средства составляют поверхностно активные вещества – ПАВ ы. Они действительно хорошо удаляют грязь, но при этом сами остаются, например, на поверхности посуды. Даже одна капля моющего средства требует, чтобы посуду ополаскивали, несколько раз меняя воду. Проведены даже специальные исследования, показавшие, что полностью удалить ПАВ ы с поверхности посуды водой невозможно. Удалить их можно, только прокалив посуду в пламени горелки.

Экологи убеждены: моющие средства небезопасны для человека. Они могут стать причиной аллергии, гипертонии, злокачественных образований, депрессии.

Биологические и растительные яды – грибы, змеиный яд и т.д.

Отравляющие вещества – зарин, зоман, фосген, иприт. В настоящее время в РФ уничтожено 50 % химического оружия, требующего утилизации, остальное будет уничтожено в ближайшие годы.

Что же из себя представляет термин “Статическое электричество ” - совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках. Электризация происходит в процессе трения двух диэлектриков, то-есть фактически происходит отрыв электронов от вещества с образованием разности потенциалов на соприкасающихся поверхностях.

Чем опасно статическое электричество?

Но перейдем к практике, чем-же нам так мешает статика в нашей работе? На первый взгляд мы не видим этого и значит оно нам не грозит. Это неверное предположение, статика присутствует всегда, когда мы ходим или соприкасаемся с разными предметами и просто в жаркий солнечный день в воздухе, количество статического электричества может превышать все воображаемые пределы. Человек начинает ощущать статическое напряжение свыше 3000 вольт и увидеть искрение можно от 5000 вольт. Иногда мы на себе можем накапливать заряд до 10000 вольт, при том что радиоэлементы могут выйти из строя при токах возникающих при напряжении уже в 5 вольт. Согласно общей статистики от электростатического разряда выходят из строя более 50 процентов всех электронных компонентов, а цифра уже собранной и эксплуатируемой продукции превышает 60 процентов.

Важно знать что величина статического электричества зависит от многих факторов, основной это относительная влажность воздуха:

Наши повседневные действия Относит. влажность более 70 процентов Относит. влажность
менее 20 процентов
Мы идем по текстильному напольному покрытию 1500 вольт 35000 вольт
Мы идем по виниловому напольному покрытию 250 вольт 1200 вольт
Забираем со стула пакет из полиэфирного материала 600 вольт 20000 вольт
Отклеивание куска клейкой ленты 1500 вольт 12000 вольт
Открытие пластиковой папки 600 вольт 7000 вольт

Так что не обязательно нам что-то специально натирать что-бы получить статический разряд, это происходит всегда без нашего на то желания.

Как бороться со статическим электричеством?

Первое и самое важное правило, рабочий инструмент и приборы должны быть обязательно заземлены. При работе с радиоэлементами и собранными устройствами на руку человека надевается специальный антистатический браслет который соединяется с точкой заземления через резистор в 1 МОм.

Рабочий стол тоже должен быть заземлен, на рабочей поверхности должно быть покрытие которое имеет может максимально проводить электрические разряды, оно должно иметь малое сопротивление. Также необходимо соблюдать чистоту в рабочем помещении или мастерской. Проводить как можно чаще влажную уборку. В помещении где производится ремонт положить специальное проводящее напольные покрытие обеспечивающие отвод накопившегося зарядка с соприкасающихся поверхностей к точке заземления.

Это лишь малая часть информации касающейся антистатической безопасности, на просторах интернета есть массу сайтов посвященных именно данной теме на которых написано много полезных советов и правил соблюдая которые вы сможете максимально обезопасить свое рабочее место. При этом самым повысив рентабельность и качество всех выполняемых работ.
______________________
Вы собираетесь купить дом масса выгодных предложений.

Статическое напряжение появляется в случае нарушения внутриатомного либо внутримолекулярного равновесия вследствие приобретения либо утраты электрона. Обычно атом находится в сбалансированном состоянии благодаря схожему числу положительных и отрицательных частиц — протонов и электронов. Электроны могут просто передвигаются от 1-го атома к другому. При всем этом они сформировывают положительные (где отсутствует электрон) либо отрицательные (одиночный электрон либо атом с дополнительным электроном) ионы. Когда происходит таковой дисбаланс, появляется статическое напряжение.

Электронный заряд электрона — (-) 1,6 х 10-19 кулон. Протон с таким же по величине зарядом имеет положительную полярность. Статический заряд в кулонах прямо пропорционален излишку либо недостатку электронов, т.е. числу неуравновешенных ионов. Кулон – это основная единица статического заряда, определяющая количество электричества, проходящее через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

У положительного иона отсутствует один электрон, как следует, он может просто принимать электрон от негативно заряженной частички. Отрицательный ион в свою очередь может быть или одиночным электроном, или атомом/молекулой с огромным числом электронов. В обоих случаях существует электрон, способный нейтрализовать положительный заряд.

Как генерируется статическое напряжение

Главные предпосылки возникновения статического напряжения:

1. Контакт меж 2-мя материалами и их отделение друг от друга (включая трение, намотку/размотку и пр.).

2. Резвый температурный перепад (к примеру, в момент помещения материала в духовой шкаф).

3. Радиация с высочайшими значениями энергии, уф-излучение, рентгеновские X-лучи, сильные электронные поля (нерядовые для промышленных производств).

4. Резательные операции (к примеру, на раскроечных станках либо бумагорезальных машинах).

5. Наведение (вызванное статическим зарядом появление электронного поля).

Поверхностный контакт и разделение материалов, может быть, являются более всераспространенными причинами появления статического напряжения на производствах, связанных с обработкой рулонных пленок и листовых пластиков. Статический заряд генерируется в процессе разматывания/наматывания материалов либо перемещения друг относительно друга разных слоев материалов. Этот процесс не полностью понятен, но более правдивое разъяснение возникновения статического напряжения в этом случае может быть получено проведением аналогии с плоским конденсатором, в каком механическая энергия при разделении пластинок преобразуется в электронную:

Результирующее напряжение = изначальное напряжение х (конечное расстояние меж пластинами/изначальное расстояние меж пластинами).

Когда синтетическая пленка касается подающего/приемного вала, низкий заряд, перетекающий от материала к валу, провоцирует дисбаланс. По мере того, как материал преодолевает зону контакта с валом, напряжение растет точно также как в случае с конденсаторными пластинами в момент их разделения.

Практика указывает, что амплитуда результирующего напряжения ограничена вследствие электронного пробоя, возникающего в промежутке меж примыкающими материалами, поверхностной проводимости и других причин. На выходе пленки из контактной зоны нередко можно слышать слабенькое потрескивание либо следить искрение. Это происходит в момент, когда статический заряд добивается величины, достаточной для пробоя окружающего воздуха. До контакта с валом синтетическая пленка исходя из убеждений электричества нейтральна, но в процессе перемещения и контакта с подающими поверхностями поток электронов направляется на пленку и заряжает ее отрицательным зарядом. Если вал железный и заземленный его положительный заряд стремительно стекает.

Большая часть оборудования имеет много валов, потому величина заряда и его полярность могут нередко изменяться. Лучший метод контроля статического заряда – это его четкое определение на участке конкретно перед проблемной зоной. Если заряд нейтрализован очень рано, он может восстановиться до того, как пленка достигнет этой проблемной зоны.

В теории появление статического заряда может быть проиллюстрировано обычный электронной схемой: C – делает функцию конденсатора, который копит заряд, как батарея. Это обычно поверхность материала либо изделия.

R – сопротивление, способное ослабить заряд материала/механизма (обычно при слабенькой циркуляции тока). Если материал является проводником, заряд стекает на землю и не делает заморочек. Если же материал является изолятором, заряд не сумеет стекать, и появляются трудности. Искровой разряд появляется в этом случае, когда напряжение скопленного заряда добивается предельного порога.

Токовая нагрузка — заряд, сгенерированный, к примеру, в процессе перемещения пленки по валу. Ток заряда заряжает конденсатор (объект) и увеличивает его напряжение U. В то время как напряжение увеличивается, ток течет через сопротивление R. Баланс будет достигнут в момент, когда ток заряда станет равен току, циркулирующему по замкнутому контуру сопротивления. (Закон Ома: U = I х R).

Если объект имеет способность копить значимый заряд, и если имеет место высочайшее напряжение, статическое напряжение приводит к появлению таких суровых заморочек, как искрение, электростатическое отталкивание/притягивание либо электропоражение персонала.

Полярность заряда

Статический заряд может быть или положительным, или отрицательным. Для разрядников неизменного тока (AC) и пассивных разрядников (щеток) полярность заряда обычно не принципиальна.

Трудности, связанные со статическим напряжением

Существует 4 главные области:

Статический разряд в электронике

На эту делему нужно направить внимание, т.к. она нередко появляется в процессе воззвания с электрическими блоками и компонентами, использующимися в современных контрольно-измерительных устройствах.

В электронике основная опасность, связанная со статическим зарядом, исходит от человека, несущего заряд, и третировать этим нельзя. Ток разряда порождает тепло, которое приводит к разрушению соединений, прерыванию контактов и разрыву дорожек микросхем. Высочайшее напряжение уничтожает также узкую оксидную пленку на полевых транзисторах и других элементах, имеющих покрытие.

Нередко составляющие не стопроцентно выходят из строя, что можно считать еще больше небезопасным, т.к. неисправность проявляется не сходу, а в непредсказуемый момент в процессе использования устройства.

Общепринятое правило: при работе с чувствительными к статическому электричеству деталями и устройствами нужно всегда принимать конструктивные меры для нейтрализации заряда, скопленного на человеческом теле. Подробная информация по этому вопросу содержится в документах евро эталона CECC 00015.

Электростатическое притяжение/отталкивание

Это, может быть, более обширно всераспространенная неувязка, возникающая на предприятиях, связанных с созданием и обработкой пластмасс, бумаги, текстиля и в смежных отраслях. Она проявляется в том, что материалы без помощи других меняют свое поведение — склеиваются меж собой либо, напротив, отталкиваются, прилипают к оборудованию, притягивают пыль, некорректно наматываются на приемное устройство и пр.

Притягивание/отталкивание происходит в согласовании с законом Кулона, в базе которого лежит принцип противоположности квадрата. В обычный форме он выражается последующим образом:

Сила притяжения либо отталкивания (в Ньютонах) = Заряд (А) х Заряд (В) / (Расстояние меж объектами 2 (в метрах)).

Как следует, интенсивность проявления этого эффекта впрямую связана с амплитудой статического заряда и расстоянием меж притягивающимися либо отталкивающимися объектами. Притягивание и отталкивание происходят в направлении силовых линий электронного поля.

Если два заряда имеют схожую полярность – они отталкиваются, если обратную – притягиваются. Если один из объектов заряжен, он будет стимулировать притягивание, создавая зеркальную копию заряда на нейтральных объектах.

Риск появления пожара

Риск появления пожара не является общей для всех производств неувязкой. Но возможность возгорания очень велика на полиграфических и других предприятиях, где употребляются легковоспламеняющиеся растворители.

В небезопасных зонах более всераспространенными источниками возгорания являются незаземленное оборудование и подвижные проводники. Если на операторе, находящемся в небезопасной зоне, насажена спортивная обувь либо туфли на токонепроводящей подошве, существует риск, что его тело будет генерировать заряд, способный спровоцировать возгорание растворителей. Незаземленные проводящие детали машин также представляют опасность. Все, что находится в небезопасной зоне должно быть отлично заземлено.

Нижеследующая информация дает короткое пояснение возможности статического разряда стимулировать возгорание в легковоспламеняющихся средах. Принципиально, чтоб неопытные торговцы были заблаговременно ознакомлены о видах оборудования, чтоб не допустить ошибки в подборе устройств для внедрения в таких критериях.

Способность разряда стимулировать возгорание находится в зависимости от многих переменных причин:
— типа разряда;
— мощности разряда;
— источника разряда;
— энергии разряда;
— наличия легковоспламеняющейся среды (растворителей в газовой фазе, пыли либо горючих жидкостей);
— малой энергии воспламенения (МЭВ) легковоспламеняющейся среды.

Типы разряда

Существует три главных типа – искровой, кистевой и скользящий кистевой разряды. Коронный разряд в этом случае во внимание не принимается, т.к. он отличается низкой энергией и происходит довольно медлительно. Коронный разряд в большинстве случаев безопасен, его следует учесть исключительно в зонах очень высочайшей пожаро- и взрывоопасности.

Искровой разряд

В главном он исходит от равномерно проводящего, электрически изолированного объекта. Это может быть человеческое тело, деталь машины либо инструмент. Подразумевается, что вся энергия заряда рассеивается в момент искрения. Если энергия выше МЭВ паров растворителя, может произойти воспламенение.

Энергия искры рассчитывается последующим образом: Е (в Джоулях) = ½ С U2.

Кистевой разряд

Кистевой разряд появляется, когда заостренные части деталей оборудования концентрируют заряд на поверхностях диэлектрических материалов, изоляционные характеристики которых приводят к его скоплению. Кистевой разряд отличается более низкой энергией по сопоставлению с искровым и, соответственно, представляет наименьшую опасность в отношении воспламенения.

Скользящий кистевой разряд

Скользящий кистевой разряд происходит на листовых либо рулонных синтетических материалах с высочайшим удельным сопротивлением, имеющих завышенную плотность заряда и разную полярность зарядов с каждой стороны полотна. Такое явление может быть спровоцировано трением либо распылением порошкового покрытия. Эффект сравним с разрядкой плоского конденсатора и может представлять такую же опасность, как искровой разряд.

Источник и энергия разряда

Величина и геометрия рассредотачивания заряда являются необходимыми факторами. Чем больше объем тела, тем больше энергии оно содержит. Острые углы увеличивают мощность поля и поддерживают разряды.

Мощность разряда

Если объект, имеющий энергию, не прекрасно проводит электронный ток, к примеру, тело человека, сопротивление объекта будет ослаблять разряд и понижать опасность. Для тела человека существует эмпирическое правило: считать, что любые растворители с внутренней малой энергией воспламенения наименее 100 мДж могут возгореться невзирая на то, что энергия, содержащаяся в теле, может быть выше в 2 – 3 раза.

Малая энергия воспламенения МЭВ

Малая энергия воспламенения растворителей и их концентрация в небезопасной зоне являются очень необходимыми факторами. Если малая энергия воспламенения ниже энергии разряда, появляется риск возгорания. Электропоражение

Вопросу риска статического удара в критериях промышленного предприятия уделяется больше внимания. Это связано с значимым увеличением требований к гигиене и безопасности труда.

Электропоражение, спровоцированное статическим напряжением, в принципе не представляет особенной угрозы. Оно просто неприятно и нередко вызывает резкую реакцию.

Есть две общие предпосылки статического удара:

Наведенный заряд

Если человек находится в электронном поле и держится за заряженный объект, к примеру, за намоточную бобину для пленки, может быть, что его тело зарядится.

Заряд остается в теле оператора, если он находится в обуви на изолирующей подошве, до того момента, пока он не дотронется до заземленного оборудования. Заряд стекает на землю и поражает человека. Такое происходит и в случае, когда оператор дотрагивается до заряженных объектов либо материалов – из-за изолирующей обуви заряд скапливается в теле. Когда оператор трогает железные детали оборудования, заряд может стечь и спровоцировать электроудар.

При перемещении людей по синтетическим ковровым покрытиям порождается статический заряд при контакте меж ковром и обувью. Электроудары, которые получают водители, покидая свою машину, провоцируются зарядом, появившимся меж сидением и их одежкой в момент подъема. Решение этой трудности – дотронуться до железной детали автомобиля, к примеру, до рамы дверного проема, до момента подъема с сидения. Это позволяет заряду неопасно стекать на землю через кузов автомобиля и его шины.

Электропоражение, спровоцированное оборудованием

Таковой электроудар вероятен, хотя происходит существенно пореже, чем поражение, спровоцированное материалом.

Если намоточная бобина имеет значимый заряд, случается, что пальцы оператора концентрируют заряд до таковой степени, что он добивается точки пробоя и происходит разряд. Кроме этого, если железный незаземленный объект находится в электронном поле, он может зарядиться наведенным зарядом. Из-за того, что железный объект является токопроводящим, подвижный заряд разрядится в человека, который дотрагивается до объекта.

 


Читайте:



О старинных святочных гаданиях Место для гадания

О старинных святочных гаданиях Место для гадания

» от 2014 года. Жирным шрифтом выделен игрок-победитель в тройке. У победителя игры указан его финальный счёт. Всего вышло 40 выпусков. Выпуск 1 (1...

Маи списки рекомендованных

Маи списки рекомендованных

Приём в МАИ для обучения по основным образовательным программам высшего профессионального образования проводится по заявлению граждан. При подаче...

Национальные исследовательские университеты

Национальные исследовательские университеты

Политику высшего образования в России демонстрирует и в значительной мере определяет появление ряда университетов с новым статусом. В 2006 году...

Образец заявления на целевое обучение в мед вуз

Образец заявления на целевое обучение в мед вуз

Несмотря на то что целевое направление в вузах широко распространено, не все абитуриенты знают о том, как можно воспользоваться таким способом...

feed-image RSS