Главная - Электроснабжение
Что называется связью в технической механике. Виды связей и их реакции

Лекция 1

ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ СТАТИКИ

    Предмет механики.

    Основные понятия и аксиомы статики.

    Связи и реакции связей.

Предмет механики

Механика  это наука, изучающая основные законы механического движения, т.е. законы изменения взаимного расположения материальных тел или частиц в сплошной среде с течением времени. Содержанием курса теоретической механики в техническом вузе является изучение равновесия и движения абсолютно твердых тел, материальных точек и их систем. Теоретическая механика является базой для многих обще-профессиональных дисциплин (сопротивление материалов, детали машин, теория машин и механизмов и др.), а также имеет самостоятельное мировоззренческое и методологическое значение. Иллюстрирует научный метод познания закономерностей окружающего нас мира – от наблюдения к математической модели, её анализ, получение решений и их применение в практической деятельности.

Курс теоретической механики традиционно делится на три части:

Статика  изучает правила эквивалентного преобразования и условия равновесия систем сил.

Кинематика  рассматривает движение тел с геометрической стороны, без учета сил, вызывающих это движение.

Динамика  изучает движение тел в связи с действующими на них силами.

Основные задачи статики:

    Изучение методов преобразования одних систем сил в другие, эквивалентные данным.

    Установление условий равновесия систем сил.

Основные понятия и аксиомы статики

Сила  мера механического воздействия одного тела на другое. Физическая природа сил в механике не рассматривается.

Сила задается модулем, направлением и точкой приложения. Обозначается большими буквами латинского алфавита:
 модуль силы. Анали-

тически силу можно задать ее проекциями на оси координат: , , , а направление в пространстве  направляющими косинусами:
,
,
.

Совокупность нескольких сил, действующих на твердое тело, называется системой сил . Две системы сил эквивалентны () между собой, если, не нарушая состояния тела, одну систему сил можно заменить другой.

Сила, эквивалентная данной системе сил, называется равнодействующей :
. Не всегда систему сил можно заменить равнодействующей.

Систему сил, приложенную к свободному твердому телу, находящемуся в равновесии, и не выводящую его из этого состояния, называют уравновешенной системой сил
~ 0.

Абсолютно твердое тело  тело, у которого расстояние между любыми двумя точками остается неизменным.

Аксиомы:


Следствие : Точку приложения силы можно переносить вдоль линии действия силы.

Доказательство:

К телу в точке А приложена сила . Добавим в точке В систему сил,
:
.
, но
, следовательно,
. Следствие доказано.

    Две силы, приложенные к телу в одной точке, имеют равнодействующую, проходящую через эту точку и равную их геометрической сумме.

,

,

Из этой аксиомы следует, что силу можно разложить на любое количество составляющих сил по заранее выбранным направлениям.

    Силы взаимодействия двух тел равны по модулю и направлены по одной прямой в противоположные стороны.

    Равновесие деформируемого тела не нарушится, если это тело отвердеет.

Иными словами, необходимые условия равновесия деформируемых и абсолютно твердых тел совпадают, что позволяет применять получаемые результаты для реальных тел и конструкций, не являющихся абсолютно твердыми.

Связи и реакции связей

Тело называется свободным , если его перемещение в пространстве ничем не ограничено. В противном случае тело называется несвободным , а тела, ограничивающие перемещения данного тела,  связями . Силы, с которыми связи действуют на данное тело, называются реакциями связей .

Основные виды связей и их реакции:

Реакция гладкой поверхности направлена по нормали к этой поверхности (перпендикулярна общей касательной).

Реакция перпендикулярна опирающейся поверхности.

    Идеальная нить (гибкая, невесомая, нерастяжимая):

Примеры: моделирует трос, канат, цепь, ремень,…

Реакция идеальной нити направлена по нити к точке подвеса.

    Идеальный стержень (жесткий, невесомый стержень, на концах которого шарниры):

Реакция связи направлена по стержню.

В отличие от нити стержень может работать и на сжатие.

    Цилиндрический шарнир:

Такая связь позволяет телу перемещаться вдоль оси, поворачиваться вокруг оси шарнира, но не позволяет точке закрепления перемещаться в плоскости, перпендикулярной оси шарнира. Реакция лежит в плоскости, перпендикулярной оси шарнира, и проходит через нее. Положение этой реакции не определено, но она может быть представлена двумя взаимно перпендикулярными составляющими.

    Сферический шарнир:

Такая связь не дает точке закрепления тела перемещаться ни в одном из направлений. Положение реакции не определено, но она может быть представлена тремя взаимно перпендикулярными составляющими.

    Подпятник:

Реакция данной связи задается аналогично предыдущему случаю.

    Жесткая заделка:

Такая связь препятствует перемещению и повороту вокруг точки закрепления. Контакт тела со связью осуществляется по поверхности. Имеем распределенную систему сил реакции, которая, как будет показано, может быть заменена одной силой и парой сил.

Аксиома освобождаемости от связей:

Литература: [1 , §13];

[2 , §13];

[ 3 , п.1.11.4].

Тела в природе бывают свободными и несвободными. Тела, свобода перемещения которых ничем не ограничена, называются свободными. Тела, ограничивающие свободу перемещения других тел, называются по отношению к ним связями .

Одним из основных положений механики является принцип освобождаемости от связей, согласно которому несвободное тело можно рассматривать как свободное, если отбросить действующие на него связи и заменить их силами – реакциями связей.

Очень важно правильно расставить реакции связей, иначе написанные уравнения окажутся неверными. Ниже приведены примеры замены связей их реакциями. На рисунках 1.1–1.8 показаны примеры замены реакциями сил, расположенных в плоскости.


а – тело весом G на гладкой поверхности;
б – действие поверхности заменено реакцией – силой R;
в – в точке А связь «опорная точка» или ребро;
г – реакции направлены перпендикулярно
опираемой или опирающейся плоскостям

Рисунок 1.1

Реакция гладкой поверхности всегда направлена по нормали к этой поверхности (рисунок 1.1). Реакция «невесомого» троса (нити, цепи, стержня) всегда направлена вдоль троса (нити, цепи, стержня) (рисунок 1.2).

Рисунок 1.6

На рисунке 1.7, а изображена бискользящая заделка. В плоскости данная опора допускает поступательное перемещение стержня как по горизонтали, так и по вертикали, но препятствует повороту (в плоскости). Реакцией такой опоры будет момент M C (рисунок 1.7, б).

Рисунок 1.7

Консоль (глухая или жесткая заделка) не допускает никакого перемещения детали. Реакцией такой опоры являются неизвестная по величине и направлению сила R A с углом α (или X A и Y A ) и момент Μ A (рисунок 1.8).

Рисунок 1.8

На рисунках 1.9 – 1.15 показаны примеры замены сил, расположенных в пространстве, их реакциями.

Шарнирно-неподвижная опора, или сферический шарнир (рисунок 1.9, а), заменена системой сил (рисунок 1.9, б) X A , Y A и Z A , т.е. силой, неизвестной по величине и направлению.

Одним из основных понятий механики является понятие механической системы. Под механической системой понимают совокупность конечного или бесконечного числа материальных точек (или тел), взаимодействующих между собой в соответствии с третьим законом Ньютона. Отсюда следует, что движение каждой точки (или тела) системы зависит как от положения, так и от движения остальных точек рассматриваемой механической системы.

Системы различают свободные и несвободные. Система называется свободной, если все входящие в нее точки могут занимать произвольные положения и иметь произвольные скорости. В противном случае, т. е. когда материальные точки, входящие в систему, не могут занимать произвольных положений или же не могут иметь произвольных скоростей, система называется несвободной.

Примером свободной механической системы может служить солнечная система, в которой Солнце и планеты можно рассматривать как материальные тела, находящиеся под взаимным действием сил ньютонианского притяжения.

Примером несвободной системы может служить система, состоящая из точек, из которых одна или

несколько вынуждены при своем движении оставаться на каких-либо линиях или поверхностях.

С указанным делением систем на свободные и несвободные связано понятие связи.

Под связью в механике понимают условия, накладывающие ограничения на свободу перемещения точек системы. Связи могут накладывать ограничения как на положения точек, так и на их скорости. Практически связи осуществляются с помощью материальных тел или приспособлений (стержней, нитей, шарниров и т. п.).

Подобно тому как силы, действующие на точки системы, подразделяют на силы внутренние и силы внешние, так и связи, наложенные на точки системы, можно подразделить на связи внутренние и связи внешние. Под внутренними связями понимают такие связи, которые будучи наложены на точки системы, не препятствуют системе свободно перемещаться после того, как она внезапно отвердеет. Связь, не обладающая этим свойством, называется внешней. Например, если две точки твердого тела соединены между собой нерастяжимым и невесомым стержнем, то такая связь будет внутренней. Таким образом твердое тело можно рассматривать как систему, подчиненную внутренним связям. Если же одна из точек твердого тела шарнирно закреплена, то в этом случае связь будет внешней.

Система, подчиненная одним лишь внутренним связям, является свободной, так как она может перемещаться как свободное твердое тело. Если же в числе связей, наложенных на точки системы, имеются внешние связи, то система является несвободной.

Условия, ограничивающие свободу перемещения точек системы, аналитически выражаются в виде уравнений или неравенств вида.

где - время, - соответственно координаты и скорости точки системы,

отнесенные к некоторой инерциальной системе отсчета, относительно которой рассматривается движение данной системы.

Связи различают удерживающие и неудерживающие; первым соответствует знак равенства в (1.1), вторым - знак неравенства.

Удерживающие и неудерживающие связи иногда соответственно называют двухсторонними и односторонними связями. Удерживающая связь, препятствуя перемещению в одном направлении, препятствует также перемещению в противоположном направлении. Неудерживающая связь препятствует перемещению в одном направлении, но не препятствует перемещению в противоположном направлении.

Примером удерживающей связи могут служить две параллельные плоскости, между которыми происходит движение шарика. Рассматривая среднюю между ними плоскость как координатную плоскость получаем уравнение связи в виде: Если же шарик движется по горизонтальной плоскости любой момент может покинуть ее, то эта плоскость будет являться неудерживающей связью. Условие такой связи будет выражаться неравенством (или ).

Другим примером неудерживающей связи может служить нить с шариком на конце. Принимая точку подвеса нити за начало координат и считая нить нерастяжимой, можем условие этой связи записать в виде неравенства

где - координаты шарика, - длина нити.

Если в процессе движения шарика выполняется неравенство

то это означает, что нить ослаблена и шарик освободился от связи.

Если же при движении шарика выполняется равенство

то это означает, что нить натянута, и на шарик действует связь.

В зависимости от того, содержит ли уравнение связи в явном виде время или нет, связи подразделяются на нестационарные (реономные) и стационарные (склерономные).

Связи, которые накладывают ограничения только на положения точек системы, называются конечными или геометрическими; аналитически они выражаются уравнением

Здесь и в дальнейшем предполагаем связи удерживающими.

Если же связи накладывают ограничения не только на положения точек, но и на их скорости, то они называются дифференциальными или кинематическими, и их аналитическое выражение имеет вид

Связи подразделяют также на голономные и неголономные. К голономным связям относят все конечные или геометрические связи вида (1.2), т. е. все связи, которые накладывают ограничения на возможные положения точек системы. К голономным связям относятся также и дифференциальные связи, которые путем интегрирования могут быть приведены к соотношениям вида (1.2):

где - некоторые функции координат возможно, времени .

Если же дифференциальные связи вида (1.4) не могут быть путем интегрирования приведены к конечным соотношениям вида (1.2), то они называются

неголономными или неинтегрируемими. Г. Герц обратил внимание на важность различия между голономными и неголономными связями для понятия виртуального перемещения системы.

Легко видеть, что если голономные связи накладывают ограничения на возможные положения точек системы, то неголономные связи накладывают ограничения на скорости точек системы. Это следует из того, что уравнение неголономной связи (1.4) всегда может быть представлено в следующем виде:

Механические системы, подчиненные голономным связям, называются голономными системами. Если же в числе связей имеются неголономные, то системы называются неголономными.

Если на систему наложены только неголономные связи, то такая система называется сдвершенно неголономной или собственно неголономной.

Классическим примером движения неголономной системы может служить качение твердого шара по шероховатой плоскости (например, движение бильярдного шара).

Пусть твердый шар радиусом катится без скольжения по абсолютно шероховатой плоскости. Возьмем две системы координат с общим началом в центре шара С. Одна из них (система пусть движется поступательно, а вторая (система ) пусть будет жестко связана с шаром (рис. 1).

Положение шара в каждый момент времени может быть определено пятью координатами: двумя координатами центра шара (третья координата ) и тремя углами Эйлера: углом прецессии углом нутации 0 и углом собственного вращения (рис. 1). Условием связи в рассматриваемой задаче является условие касания шара с плоскостью и обращение

в нуль скорости точки А касания шара. Принимая центр шара С за полюс и обозначая его скорость через мгновенную угловую скорость вращения шара - через , а вектор-радиус, проведенный из центра шара в точку касания , - через , можем записать скорость точки А в следующем виде:

Проектируя это векторное равенство на оси координат и удовлетворяя условию связи получаем

где - составляющие вектора угловой скорости . Последнее уравнение интегрируется и дает одно уравнение связи показывающее, что центр шара С движется в плоскости, параллельной плоскости и отстоящей от нее на расстоянии, равном радиусу шара R.

Если связь задаётся равенством, то говорят, что такая связь удерживающая или двусторонняя :

Если связь задаётся неравенством, то говорят, что такая связь неудерживающая или односторонняя :

Если функция зависит явно от времени, то говорят, что связь нестационарная или реономная . Если эта функция не зависит явно от времени, то говорят что эта связь стационарная или склерономная .

Литература

  • Берёзкин Е. Н. Курс теоретической механики - 2-ое издание, переработанное и дополненное - М .: Изд-во МГУ - 1974 г., 645 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Связь (механика)" в других словарях:

    - (от греч. mechanike (techne) наука о машинах, искусство построения машин), наука о механич. движении матер. тел и происходящих при этом вз ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или … Физическая энциклопедия

    МЕХАНИКА РАЗВИТИЯ - МЕХАНИКА РАЗВИТИЯ. Содержание: История......................18 Материалы и методы исследования........20 Проблема детерминации.............22 Два основных типа формообразования......26 М. р. и регенерация................30 Практическое значение М … Большая медицинская энциклопедия

    Химическая связь явление взаимодействия атомов, обусловленное перекрыванием электронных облаков, связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861… … Википедия

    Раздел физики, в котором изучается движение тел под действием сил. Механика охватывает очень широкий круг вопросов в ней рассматриваются объекты от галактик и систем галактик до мельчайших, элементарных частиц вещества. В этих предельных случаях… … Энциклопедия Кольера

    Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

    - [от греч. mechanike (téchne) наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением… … Большая советская энциклопедия

    Напряжения в области контакта при одновременном нагружении нормальной и касательной силой. Напряжения определены методом фотоупругости Механика контактного взаимодействия занимается расчётом упругих, вязкоупругих и пластичных тел при статическом… … Википедия

    СВЯЗЬ - средство приобщения предметов (А, В, С и т. д.) друг к другу, способ пребывания одного в другом, разных в их единстве; форма бытия многого в едином. Вступающими в С. предметами А, В, С и т. д. могут быть любые определенности материального и (или) … Современный философский словарь

    - (волновая механика), теория, устанавливающая способ описания и законы движения микрочастиц (элем. ч ц, атомов, молекул, ат. ядер) и их систем (напр., кристаллов), а также связь величин, характеризующих ч цы и системы, с физ. величинами,… … Физическая энциклопедия

Книги

  • , Вебстер А.Г. , Эта книга создалась из лекций, которые я в продолжение последних четырнадцати лет читал в Clark University, главным образом, для моих слушателей курса физики. Очевидно, что она не… Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа ,
  • Механика материальных точек твердых, упругих и жидких тел , Вебстер А.Г. , Эта книга создалась из лекций, которые я в продолжение последних четырнадцати лет читал в Clark University, главным образом, для моих слушателей курса физики. Очевидно, что она не… Категория:

Основные понятия и аксиомы статики

Статика – учение о силах и условиях равновесия материальных тел, находящихся под действием сил.

Сила – мера механического взаимодействия тел. Совокупность сил, действующих на абсолютно твердое тело, называется системой сил.

Абсолютно твёрдое тело - совокупность точек, расстояния между текущими положениями которых не изменяются, каким бы воздействиям данное тело ни подвергалось.

В статике решаются две задачи :

1. Сложение сил и приведение систем сил, действующих на тело к простейшему виду;

2. Определение условий равновесия действующих на тело систем сил.

Две системы сил называются эквивалентными , если они оказывают одинаковое механическое воздействие на тело.

Система сил называется уравновешенной (эквивалентной нулю), если она не изменяет механического состояния тела (то есть состояния покоя или движения по инерции).

Равнодействующей силой называется одна сила, если она существует, эквивалентная некоторой системе сил.

Силы, линии действия которых пересекаются в одной точке, называют сходящимися .

1. Аксиома о равновесии системы двух сил . Под действием двух сил, приложенных к абсолютно твердому телу, тело может находиться в равновесии тогда и только тогда, когда эти силы равны по величине и направлены вдоль одной прямой в противоположные стороны (рис. 1.1).

Рисунок 1.1

2. Аксиома о добавлении (отбрасывании) системы сил, эквивалентной нулю . Действие данной системы сил на абсолютно твердое тело не

изменится, если к ней прибавить или отнять уравновешенную систему сил (т.е. эквивалентную нулю).

Имеем систему ; добавим 0

Получим { ; }.

Следствие: При переносе силы вдоль её линии действия, действие этой силы на тело не меняется. Из этого следствия вытекает, что сила приложенная к абсолютно твёрдому телу представляет собой скользящий вектор.

Пусть в точке А твердого тела приложена сила (рис.1.2). К этой силе на ее линии действия в точке В в соответствии с аксиомой II добавим систему сил , эквивалентную нулю, для которой . Выберем силу , равную силе .

Рисунок 1.2

Полученная система трех сил эквивалентна, согласно аксиоме о добавлении равновесной системе сил, силе , то есть .

Система сил , согласно аксиоме 1, эквивалентна нулю, и согласно аксиоме 2 ее можно отбросить. Получится одна сила , приложенная в точке В , то есть . Окончательно получаем . Сила приложена в точке А . Она эквивалентна такой же по модулю и направлению силе , приложенной в точке В , где точка В – любая точка линии действия силы . Теорема доказана: действие силы на твердое тело не изменится от переноса силы вдоль линии действия. Силу для твердого тела можно считать приложенной в любой точке линии действия, то есть сила – скользящий вектор. Как скользящий вектор сила характеризуется: численным значением (модулем) ; направлением силы ; положением линии действия силы на теле.

3.Аксиома параллелограмма сил. Две силы , приложенные в одной точке абсолютно твердого тела, имеют равнодействующую силу , приложенную в той же точке и равную геометрической (векторной) сумме этих сил (рис.1.3).

Рисунок 1.3

Следствие: Теорема о трех не параллельных силах: Если под действием трех сил тело находится в равновесии и линии действия двух сил пересекаются, то все силы лежат в одной плоскости и их линии действия пересекаются в одной точке.

Рисунок. 1.4

Положим, что тело находится в равновесии под действием трех сил , 3 , приложенных в точках А, В, С (рис.1.4). По 3 аксиоме равнодействующая первых двух сил может быть найдена по правилу параллелограмма, построенного на силах 1 и 2, перенесенных вдоль линии их действия в точку О пересечения последних, т. е. . Согласно первой аксиоме статики для равновесия тела необходимо и достаточно, чтобы сила 3 была уравновешивающей двух первых сил. Это возможно только в том случае, когда силы и 3 лежат на одной прямой и имеют противоположные направления. Но тогда линии действия сил , 3 пересекутся в одной точке О. Любая из трех данных сил уравновешивает две другие. Выведенное условие равновесия трех не параллельных сил является необходимым, но не достаточным. Если линии действия трех сил пересекаются в одной точке, то отсюда вовсе не следует, что эти три силы представляют собой уравновешенную систему сил.

4. Аксиома о равенстве сил действия и противодействия. При всяком действии одного тела на другое имеет место такое же численно, но противоположное по направлению противодействие (III закон Ньютона). Силы взаимодействия двух тел не составляют систему уравновешенных сил, так как приложены к разным телам.


Рисунок 1.5

5. Аксиома о связях. Материальные объекты (тела и точки), которые ограничивают свободу перемещения рассматриваемого твердого тела, называются связями. Сила, с которой связь действует на тело, препятствуя его перемещению, называется реакцией связи. Реакция связи направлена противоположно возможному перемещению тела. Аксиома связей утверждает, что всякую связь можно отбросить и заменить силой или системой сил (в общем случае), то есть реакциями связи.

6. Аксиома затвердевания. Равновесие деформируемого тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым). Если деформируемое тело находилось в равновесии, то оно будет находиться в равновесии и после его затвердевания.

Основные виды связей и их реакции

Приведем примеры связей для плоской системы сил и их замены силами реакций связей.

1. Гладкая поверхность (рис.1.6,а). Если тело опирается на идеально гладкую поверхность, то реакция поверхности направлена по нормали к общей касательной поверхностей тел в точке соприкосновения.

2. Подвижная шарнирная опора, подвижный шарнир – опора, поставленная на катки, не препятствующие перемещению тела параллельно опорной плоскости. Реакция подвижного шарнира направлена по нормали к поверхности, на которую опираются катки шарнира (рис.1.6,б).

а)
б)


3. Неподвижная шарнирная опора, неподвижный шарнир – совокупность неподвижного валика и надетой на него втулки с твердым телом, вращающимся вокруг оси (подшипник, петля). Реакция неподвижного шарнира проходит через ось валика, в неизвестном направлении, поэтому определяют две ее составляющие, направленные параллельно осям координат, перпендикулярных оси валика (рис. 1.6, в).

4. Жесткая заделка – жестко закрепленная балка, стержень. Связь препятствует любому движению конца балки. Для определения реакции жесткой заделки необходимо определить составляющие главного вектора R А, направленные параллельно осям координат и главный момент М А заделки (рис. 1.6, г).

5. Стержень – жесткий невесомый стержень, концы которого соединены с другими частями конструкции шарнирами. Реакция направлена по линии, проведенной через опорные шарниры стержня (рис. 1.6, д).

6. Гибкая связь – нить, цепь, трос. Реакция приложена к твердому телу в точке соприкосновения и направлена по связи (рис. 1.6, е).

 


Читайте:



Что такое акмеизм в литературе определение кратко

Что такое акмеизм в литературе определение кратко

греч. - наивысший расцвет) - направление в русской поэзии нач. XX в., выступавшее за поэтизацию чувств, точность значения слов (А. Ахматова, Н....

Александр веремеенко биография

Александр веремеенко биография

родился в Переславле-Залесском на Ярославщине. Отец – коренной сибиряк с Алтая, кадровый военный, ветеран Великой Отечественной войны,...

Что значит сон про свадебное платье?

Что значит сон про свадебное платье?

Во всех без исключения сонниках свадебное платье трактуется позитивно. Обобщая толкования можно выделить основные предсказания: Приближение важных...

К чему снится свадебное платье по соннику

К чему снится свадебное платье по соннику

С древних времен люди придавали большое значение снам. В течение многих лет, разными научными и псевдонаучными способами создавались и...

feed-image RSS